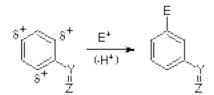

# **ELECTROPHILIC AROMATIC SUBSTITUTION REACTIONS**

Two major effects play a role:

- Resonance Effect
- Inductive Effect


# **Resonance Effect**

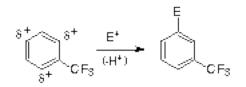
- Through pi (double bond) system
- Strong effect
- Can be e- *Donating* (ortho-para directing) or *Withdrawing* (meta directing)
- Resonance Donating Effect:
  - $\Rightarrow$  ortho-para directing, activates (i.e. more reactive than benzene)
  - $\Rightarrow$  can often be recognized by lone pair of e- on atom directly attached to aromatic ring



# • Resonance Withdrawing Effect:

- $\Rightarrow$  meta directing, deactivates (i.e. less reactive than benzene)
- ⇒ it can often be recognized by double bond (often with Z=oxygen) conjugated to aromatic ring




#### **Inductive Effect**

- Through sigma (single bond) system
- Weaker effect
- Can be e- *Donating* (ortho-para directing) or *Withdrawing* (meta directing)
- Inductive Donating Effect:
  - $\Rightarrow$  ortho-para directing, activates (i.e. more reactive than benzene)
  - $\Rightarrow$  often caused by an alkyl group



## • Inductive Withdrawing Effect:

- $\Rightarrow$  (meta directing, deactivates i.e. less reactive than benzene)
- $\Rightarrow$  often caused haloalkyl group



## • Multiple Substituents:

- $\Rightarrow$  Position of reaction is controlled by strongest donating group
- ⇒ substitution between meta substituents rare (very difficult because of steric crowding)