Gas Law: (Different kinds of units for pressure and volume can be used provided the value of the gas constant is adjusted to those units)

PV = nRT P = Pressure in atm

V = Volume in L

n = Number of Moles

T = Temperature in $^{\circ}$ K; K and $^{\circ}$ C are the same size, but 0 K = - 273 $^{\circ}$ C

R = Gas Constant

R is $0.082 L^{-}$ atm. mol . K

Standard conditions for temperature and pressure (STP)

Old definition of STP used in this course

Standard pressure is 1 atmosphere, or 760 mmHg; standard temperature is 273 K 1 mol of gas occupies 22.4 L at STP. –

<u>Sample Question</u>: A certain amount of N₂ gas occupies a volume of 3 mL at 750 mmHg and room temperature (298 K). What volume it will occupy at standard pressure and temperature (STP)?

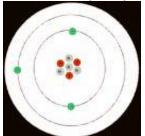
$$P_1 = 760 \text{ mmHg}$$
 $T_1 = 273 \text{ °K}$ $V_1 = ?$ $P_2 = 750 \text{ mmHg}$ $T_2 = 298 \text{ °K}$ $V_2 = 3 \text{ mL}$

Solve for V₁

$$V_1 = \underline{T_1}\underline{P_2}\underline{V_2} = \underline{(273 \text{ °K})(750 \text{ mmHg})(3 \text{ mL})} = 2.71 \text{ mL}$$

 $T_2\underline{P_1} = \underline{(298 \text{ °K})(760 \text{ mmHg})}$

Question: How many moles of N_2 is 2.71 mL at STP and what is its mass?


Note: 1 mole of an ideal gas occupies 22.4 L at STP.

$$2.71 \times 10^{-3}$$
 L $\times 1$ mole = 1.21×10^{-4} moles of N_2 22.4 L

$$1.21 \times 10^{-4} \text{ mol} \times 28 \text{ g/mol} = 3.4 \text{ mg of N}_2$$

Atomic Theory:

- Neils Bohr (1913) – Won the Nobel prize for his atomic theory – NOT fully correct

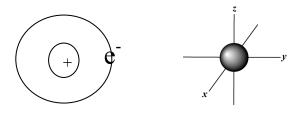
- The neutrons (no charge) and protons (positively charged) occupy a dense central region called the nucleus (p⁺ +N)
- The electrons (negatively charged) orbit the nucleus much like planets orbiting the Sun
- de Broglie (1924) His 12 page PhD thesis won him the Nobel Prize
 - He proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave particle duality of matter)

Particles ↔ Waves

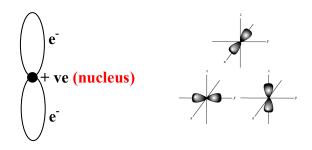
Often the electron density distribution is called an "orbital" by chemists

- The orbitals of an atom are described by wave functions (mathematical equations)
- These have no direct physical meaning, but when squared describe electron density

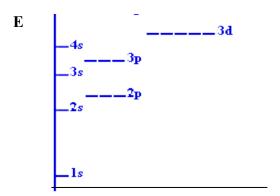
 ψ = Wave function


 ψ = orbital

 ψ^2 = (orbital)² = electron density distribution


For the hydrogen (H) atom: >98% of electron density is found in a sphere with diameter of 1\AA (10^{-8} cm)

Orbitals:


1. s-Orbital - Spherical shaped (electron density)

2. *p*-Orbital - Dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Energy (E) Level Diagram for an Atom:

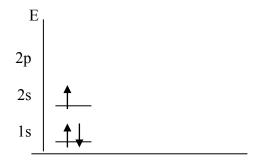
Degenerate orbitals have the same energy

-e.g. all three 2p orbitals have the same energy

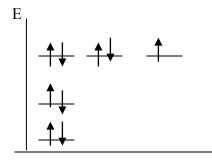
Atoms	<u>Protons (+)</u> = Atomic #	Neutrons	1s electrons	2s electrons	2p electrons
Н	1	0	1		
Не	2	2	2		
Li	3	3	2	1	

Rules for Filling Electron Orbitals – AUFBAU Rule (Building-Up Principle):

- 1) Add electron to the lowest energy orbital available
- 2) Maximum of two electron per orbital (each having opposite spin quantum number)
 - Pauli Exclusion Principle
- 3) Place one electron into each orbital of the same energy (degenerate orbitals), before adding a second electron
 - Hund's Rule of Maximum Multiplicity


Hydrogen (H)

2p 2s 1s ______


Helium (He)

Lithium (Li)

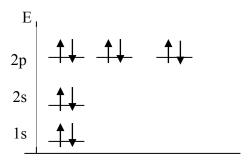
Fluorine (F)

All elements want an inert gas configuration (e.g. Ne) and from the diagrams above, both Li and F are unhappy with unfilled orbitals (not in an inert gas configuration).

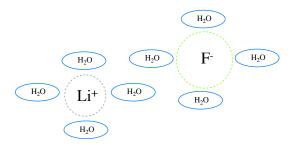
If Li loses an electron to become Li⁺ and obtain inert gas configuration, it becomes isoelectronic with He

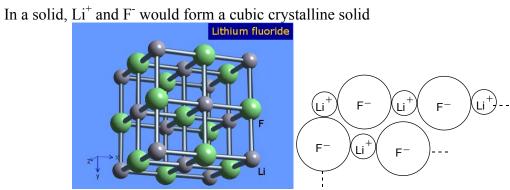
-Isoelectronic = same electronic structure

If F gains an electron to become F and obtain inert gas configuration, it becomes isoelectronic with Ne


Ionic Bonding

Lithium fluoride is an example of <u>ionic bonding</u> in which positive and negative species are bonded to each other. Li could lose 1e⁻ from 2s orbital to become isoelectronic to He (as Li⁺) and F could gain 1e⁻ to become isoelectronic to Ne (as F⁻).


$$Li^{o}$$
 + F^{o} \rightarrow Li^{+} + F^{-}
Loss of $1e^{-}$ Gain of $1e^{-}$

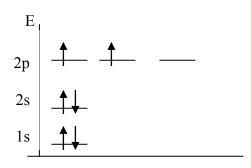

Isoelectronic = Same electron configuration

<u>F (anion)</u> Isoelectronic with Ne

In space, Li⁺ and F⁻ would be attracted to each other In solution, Li⁺ and F⁻ might be separated due to solvation (e.g. water would surround)

Electronegativity

- Desire of atoms for electrons
- Electronegativity increases from left to right across the period in the periodic table (atoms get stronger attraction as the nuclear charge increases
- Electronegativity increases from bottom to top in the group (Distance between nucleus and valence shell decreases)

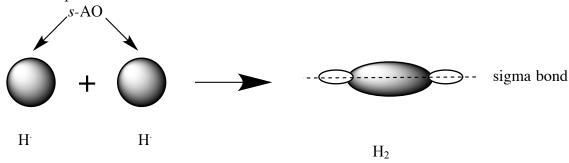

Covalent Bonding

- Sharing of electrons between the atoms
- More common in organic chemistry

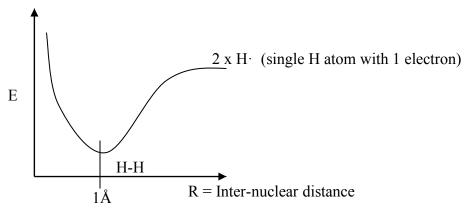
Electronic configuration of carbon (C):

- Atomic number = 6
- Atomic weight = 12

Carbon (C)

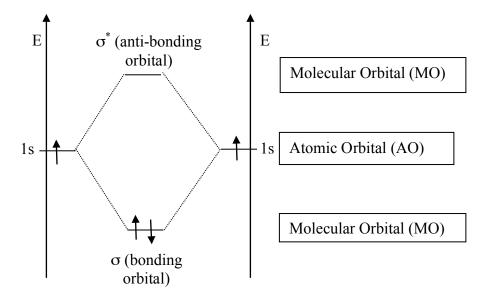


- Carbon needs to gain or lose 4e⁻ to get an inert gas configuration, but this would result in unfavourable charge buildup:
- C⁴⁺ is isoelectronic with He
- C⁴⁻ is isoelectronic with Ne
- So, carbon makes up to 4 bonds to <u>share</u> 4e (covalent bonding)


Energetics of Forming Bonds

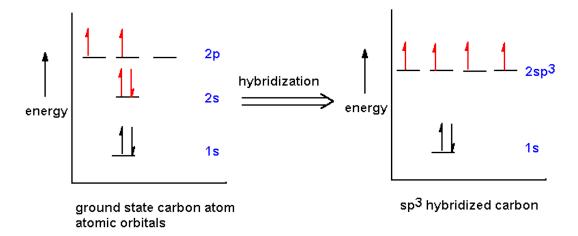
As two hydrogen atoms come together, molecular hydrogen (H₂) is formed

Orbital representation:



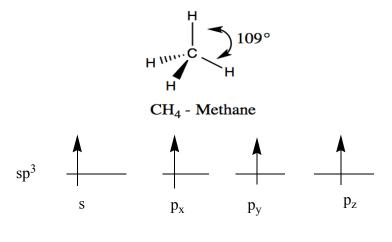
Energy diagram of two hydrogen atoms interacting to form a bond:

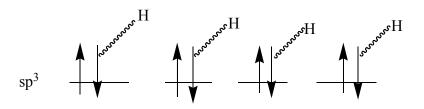
1Å is the average H-H bond distance



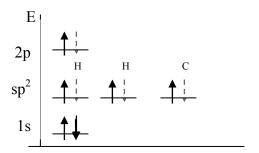
LCAO

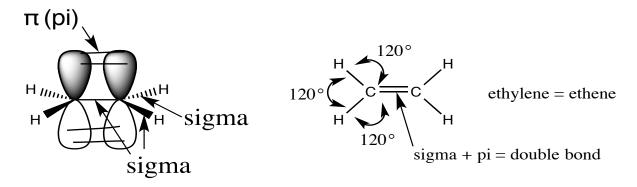
- Linear combination of atomic orbitals
- Combination of atomic orbitals of s- character gives molecular orbital called sigma molecular orbital (σ)


Hybridization:


- Mixing of atomic orbitals (with the wrong geometry for bonding) to form hybrid orbitals with the correct geometry for bonding

sp³ Hybridization


- Single bonds
- Tetrahedral geometry
- Angle between two H atoms in methane: 109°, close to that with other elements
- Often free rotation around single bonds
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)



sp² Hybridization

- Double bonds
- Planar geometry
- Angle between two atoms: 120°
- No free rotation around double bonds
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)
- Overlap of p atomic orbitals with s component gives pi molecular orbital (bond)

- Each line in a structure represents 2 e Solid wedge (Toward you / out of the page Dashed wedge (Away from you / into the page