General Molecular Formula of Alkanes

- No rings: general formula is C_NH_{2N+2}
- Each deviation of 2 hydrogens from the C_NH_{2N+2} formula is a **degree of unsaturation**
- 1 Degree of unsaturation: C_NH_{2N} Alkanes with one ring or double bond
- 2 Degrees of unsaturation: C_NH_{2N-2} Alkanes with two rings or double bonds, or one each

Examples of Naming Cycloalkanes:

Degree of Unsaturation= 2

1-Cyclopropylcyclohexane

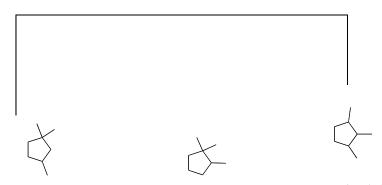
Degree of Unsaturation= 1

7-cyclopropyl-4-ethyl-2-methyldecane

Degree of Unsaturation= 2

1-Cyclobutyl-3-ethyl-1-methylcyclopentane

ISOMERS


Structural (Constitutional) Isomers

Share the same molecular formula but have the atomic bonds in different places

1,4-dimethylcyclohexane

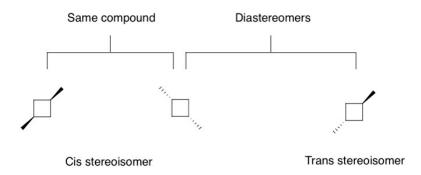
The above two compounds are structural (also known as constitutional) isomers

Structural or constitutional isomers

1,1,3-trimethylcyclopentane

1,1,2-trimethylcyclopentane

1,2,3-trimethylcyclopentae

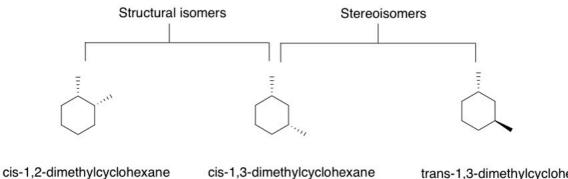

Stereoisomers

Compounds with the same molecular formula, same order of connection (base name) but connection of atoms that differ in 3D geometry

Two Types:

- 1. Diastereomers stereoisomers that are not mirror images
- 2. Enantiomers stereoisomers that are non-superposable mirror images of each other

Example: 1,3 dimethylcyclobutane



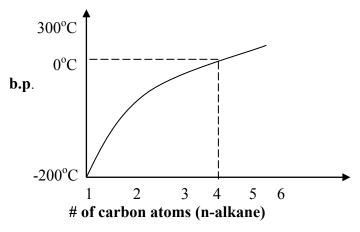
The first and second compounds are the same compound rotated in 3D space. The third compound has different geometry at one center, making it a stereoisomer, specifically a diastereomer.

Cis - the hydrogen atoms of the substituents are on the same side of the ring

Trans - the hydrogen atoms of the substituents are on opposite sides of the ring

Example: 1,2-dimethylcyclohexane and 1,3-dimethylcyclohexane

trans-1,3-dimethylcyclohexane

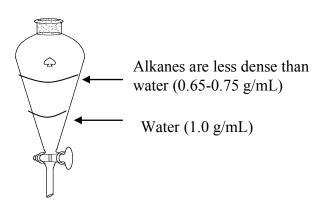

The second two compounds are diastereomers of each other.

Physical Properties of Alkanes:

Boiling Point

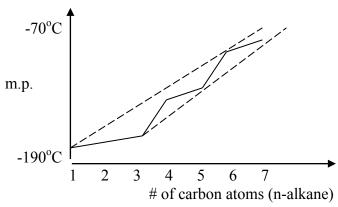
Intermolecular forces are dominated by London forces

- Alkanes are non-polar because H and C have similar electronegativity leading them to interact with themselves through London Forces which causes a trend in boiling point:



The boiling point increases as the size of the alkane increases because the longer carbon chains have greater surface area to experience London Forces (#C < 20). As the boiling point increases, the graph reaches a plateau where alkane starts to decompose (#C > 20)

Solubility

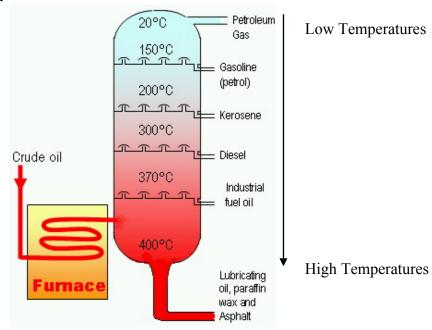

- Soluble in other organic solvents (like dissolves like)
- Not miscible with water → floats due to lower density
- Low density ($\rho = \text{rho} = \text{g/cm}^3$)
 - \circ ρ water ~ 1 g/cm³
 - \circ ρ alkanes ~ 0.7 g/cm³

Separatory Funnel (density separation)

Melting point

- Melting points are related to the crystal structure packing efficiency
- The predicted line (dotted line) is not what we observe, but a zig zag line (continuous) resulting from crystal structure packing.
- Alkanes are flammable and will combust into CO₂ and H₂O

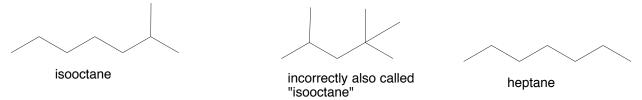
e.g. Pentane


	mp (°C)	bp (°C)		
n-Pentane	-129	36	well packed	• n-pentane has high bp due to multiple contacts of straight chains (London Forces)
Isopentane 2-methylbutane	-160	28	less well packed	
	-13	9	"ball-like" shape, so B.P. comes down	 mp of neopentane determined by good crystal packing of spherical shape

Neopentane 2,2-dimethylpropane

Source of Hydrocarbons

- Petroleum


Distillation of Petroleum:

• Petroleum is a mixture of alkanes and other hydrocarbons (>>200 compounds)

Fuel

A fuel composed of 100% "isooctane" will have an octane rating of 100. Heptane is bad for knocking. A fuel that knocks like a mixture of 90:10 "isooctane" to heptane has a 90 octane rating

At the pump you typically see an octane rating between 88 and 94.

Pb(CH₂CH₃)₄ is known as tetraethyl lead

- -Anti-knocking compound
- -Toxic

 $Pb(CH_2CH_3)_4 + O_2 + heat \rightarrow PbO (bad for engine) + CO_2 and H_2O$

To mitigate this problem: 1,2-dibromoethane (Br-CH₂-CH₂-Br) can be included. It reacts with PbO to form PbBr₄, which is a gas that escapes into the atmosphere, harming the environment but leaving your vehicle unharmed

Conformation

Different 3D shapes of a single (the same) molecule obtained by rotation about single bonds

Example: Ethane

Less stable Conformation H
$$=$$
 H $=$ H $=$

At room room temperature (20 °C): 15-20 kcal/mol of energy available and which allows for rotation around C-C occurs rapidly at room temperature. – Important to know

There is a **Steric effect** between neighboring bonds to hydrogens: Repulsion of filled shells of e⁻

Newman Projections

This is a tool to examine the stereochemistry about one specific bond

Staggered conformation (hydrogens are anti) Eclipsed conformation (hydrogens are syn)

Example: n-butane (C_4H_{10})

Rotation around all bonds still very rapid.

Most stable (most populated conformation) is called anti and has groups as far away as possible.