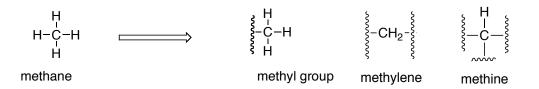
Systematic (IUPAC) Nomenclature

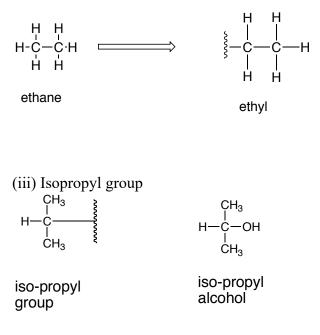
RULES:

- 1. Find the longest straight chain
- 2. Number from end of the chain, so that the 1st branch point has the lowest number
- 3. Name the chain, then add prefixes (for the groups attached) with number and name the groups attached
- 4. Separate numbers and names by dash

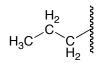
Common name: isopro<u>pyl</u> Systematic name: isobut<u>ane</u> 2-methylpropane

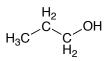
neopentane 2,2-dimethylpropane


Note: iso = second-to-last carbon of the chain is disubstituted (2 methyl groups) neo = second-to-last carbon of the chain is trisubstituted (3 methyl groups)

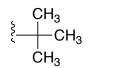

Prefixes for naming: Di (2), Tri (3), Tetra (4), Penta (5), Hexa (6) etc.

Groups (part of an alkane structure)


- In naming the particular group, drop the "ane" part and add "yl" to the name
- For example, meth<u>ane</u> \rightarrow meth<u>yl</u>


(i) Methyl group – CH₃

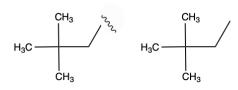
(iv) n-Propyl group



n-propyl chain

n-propyl alcohol

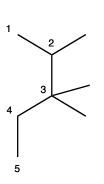
(v) *tert*-Butyl group (t-butyl)

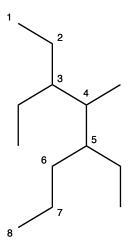


$$\begin{array}{c} \mathsf{CH}_3\\\mathsf{CI} \xrightarrow{} \mathsf{CH}_3\\\mathsf{CH}_3\end{array}$$

tert-Butyl chain

tert-Butyl chloride


(vi) neo group



neo chain

2,2-dimethylbutane

Naming Examples:

2,3,3-trimethylpentane

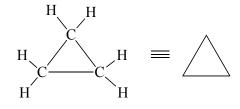
3,5-diethyl-4-methyloctane

Cycloalkanes:

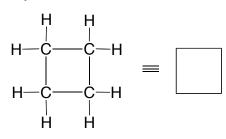
General Molecular Formula of Alkanes

- Linear alkanes: general formula is $C_NH_{2N} + 2$
- Each **degree of unsaturation** "removes" 2 hydrogens from the C_NH_{2N} +2 formula
- (if there are no nitrogens in the molecule, there will always be an even # of hydrogens)
- Cylcoalkanes always have at least 1 degree of unsaturation

e.g.


- $\circ~1$ Degree of unsaturation : $C_{N}H_{2N}~$ Alkanes with one ring or double bond
- $\circ~2$ Degrees of unsaturation : $C_{N}H_{2N\text{-}2}$ Alkanes with two rings or double bonds, or one each

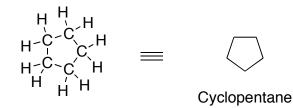
Note: Ring Structure Naming


- Parent ring is the largest one
- Prefix with "cyclo"

- Start with numbering at point of maximum branching/most important functional group
- Number so as to give next branch/functional group lowest number

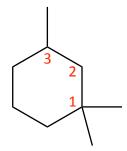
Cyclopropane, C₃H₆

Cyclobutane, C₄H₈



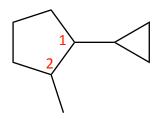
One degree of unsaturation (*n*-propane is C₃H₈)
Not a structural isomer (different molecular formula)

- C-C-C bond angle (60°)


- Highly reactive due to ring strain (sp³ carbons prefer to be 109°)

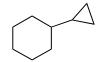
Cyclopentane, C5H10

Examples of Naming Cycloalkanes:


Ex #1) C9H18

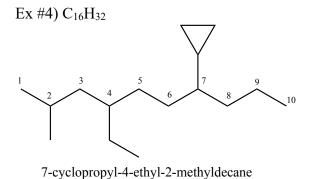
1,1,3-trimethylcyclohexane

Degree of Unsaturation= 1


Ex #2) C9H16

1-cyclopropyl-2-methylcyclopentane

Degree of Unsaturation= 2


Ex #3) C₉H₁₆

Degree of Unsaturation= 2

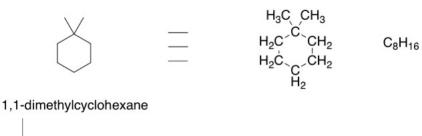
1-Cyclopropylcyclohexane

Example 2 and 3 both have the formula C_9H_{16} so they are structural isomers

Degree of Unsaturation= 1

Ex #5) C₁₂H₂₂

Degree of Unsaturation= 2

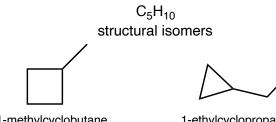

1-Cyclobutyl-3-ethyl-1-methylcyclopentane

ISOMERS

Structural (Constitutional) Isomers

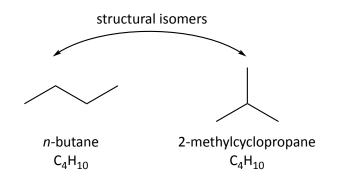
Share the same molecular formula but have the atomic bonds in different places -

Example 1

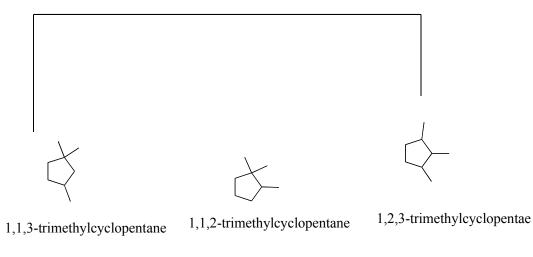


 C_8H_{16}

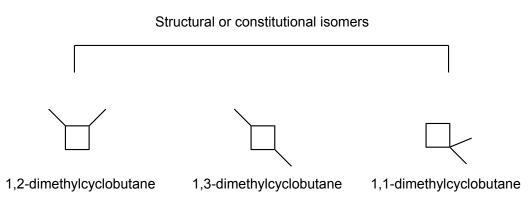
1,4-dimethylcyclohexane


The above two compounds are structural (also known as constitutional) isomers

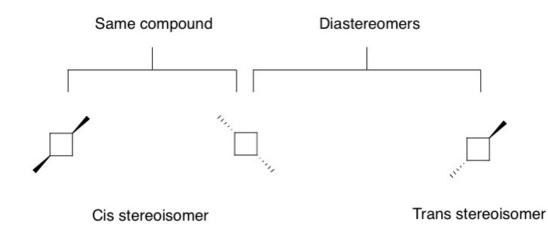
Example 2


1-methylcyclobutane

1-ethylcyclopropane



Structural or constitutional isomers

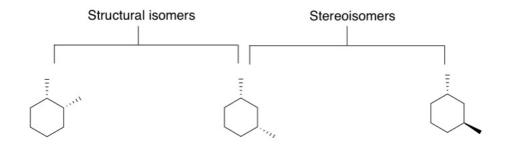

Stereoisomers

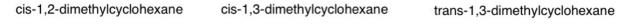
Compounds with the same molecular formula, same order of connection (base name) but connection of atoms that differ in 3D geometry

Two Types:

- 1. Diastereomers stereoisomers that are not mirror images (all stereoisomers that are not enantiomers)
- 2. Enantiomers stereoisomers that are non-superimposable mirror images of each other

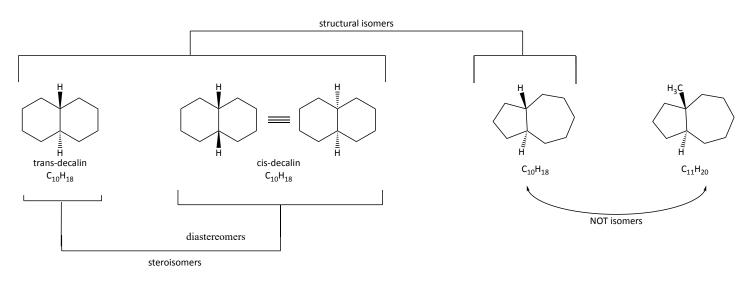
Example: 1,3-dimethylcyclobutane

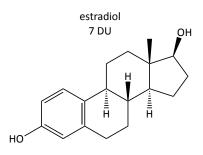


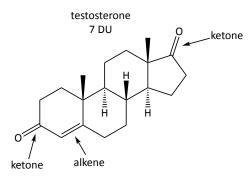

The first and second compounds are the same compound rotated in 3D space. The third compound has different geometry at one center, making it a stereoisomer, specifically a diastereomer.

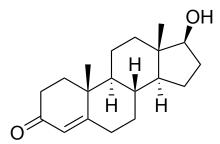
Cis - the substituents are on the same side of the ring

Trans - the substituents are on opposite sides of the ring


Example: 1,2-dimethylcyclohexane and 1,3-dimethylcyclohexane

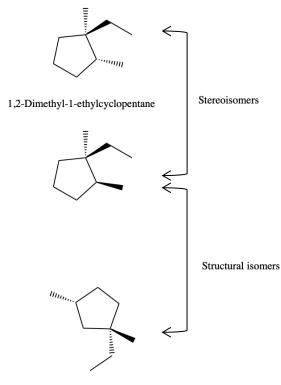

The second two compounds are diastereomers of each other.


Example: decalin - C₁₀H₁₈



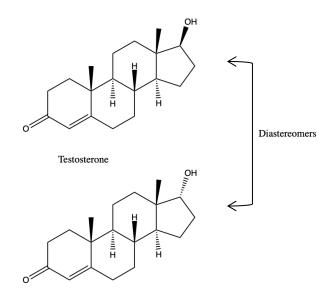
Example: steroids

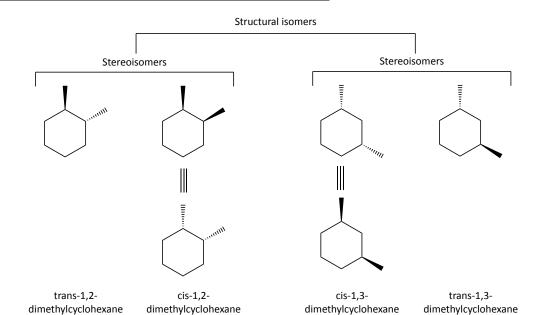
and rost enedione



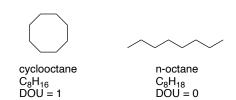
Testosterone

Molecular formula? Functional groups? Degrees of Unsaturation? How many methyls? How many methylenes? How many methines?


TEST YOURSELF

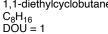

Example:

1,3-Dimethyl-1-ethylcyclopentane


Example of diastereomers:

More on differentiating structural and stereoisomers

Example:



Cyclooctane and 1,2-diethylcyclobutane and 1,1-diethylcyclobutane are structural (constitutional) isomers – they all have the same molecular formula

n-octane is not a structural isomer of the others, it has a different molecular formula

1,2-diethylcyclobutane C_8H_{16} DOU = 1

Degrees of Unsaturation = 2 (1 ring and 1 double bond) $C_6H_{10}O$