CHEM 261

Recall:

The lower the pKa the more acidic the compound

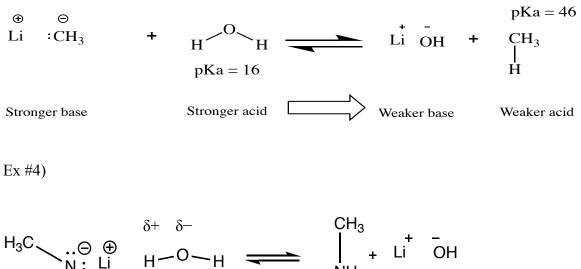
Examples of strong acids:

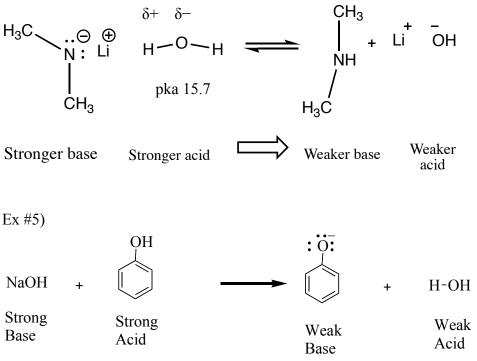
Acid	рКа]
HI	-10	
HBr	-9	\int
HC1	-7	- Can go up to +3.17 a diluted sol'n (in
HF	-10	water)
H_3O^+	-1.74	

Two factors that affect acidity of the above acids:

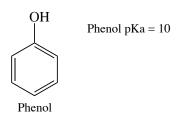
- 1) Electronegativity the more electronegative the atom, the better it can hold a negative charge
- 2) Solvation the larger the ion, the better solvated it can be and so the more acidic it's conjugate acid will be

Ex #1)


⊕ ⊝ Na OH	+	HCI	 ⊕ ⊝ Na Cl	+	н-он
pKa=-7 Strong Acid		Weak Base		pKa=16 Weak Acid	

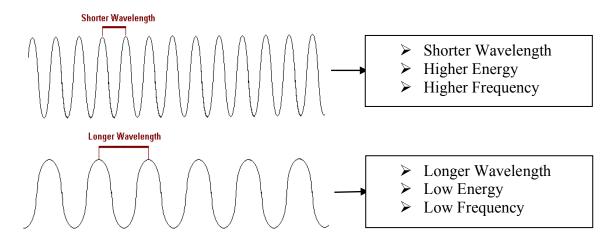

A strong acid and a strong base will quickly react with each other to drive the reaction to the weak acid and the weak base.

Ex #2)



While water is not actually a strong base, it is in comparison to C⁻. HCl is the strong acid, and so the equilibrium lies to the right. Hence H_3O^+ is the strongest acid that will exist in an aqueous solution of HCl.

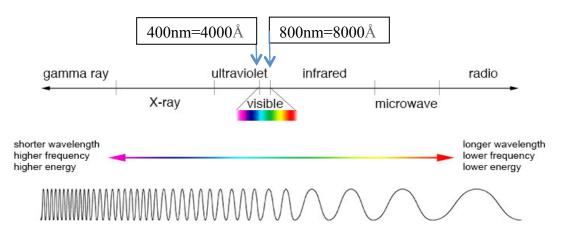
NB: Oxygen is more electron withdrawing than Carbon and can stabilize negative charge so removing a proton from the oxygen is preferable than from the Carbon on the phenol compound


Electromagnetic Radiation:

Infrared (IR) Spectroscopy – Background only:

 $E = hc/\lambda = hv$, energy is quantized

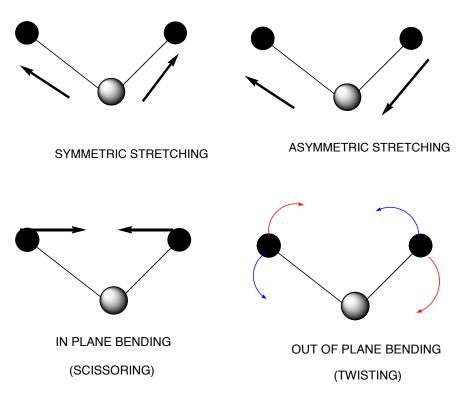
- E = Energy
- h = Planck's Constant= 6.6×10^{-34} joules/sec
- v = Frequency
- $\lambda = Wavelength$


 $c = Speed of light = 3.0 X 10^{10} cm/sec$

NB: There is an inverse relationship between wavelength and frequency.

Electromagnetic Spectrum:

NB: 1nm = 10 angstrom

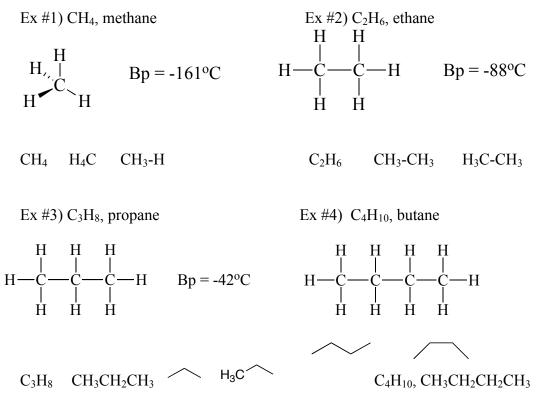

UV and visible light: conjugated double bond systems e.g. C=C bonds absorb UV light and some visible light

Infrared Radiation: bond stretching and bending modes

-Measured in wavenumbers (cm⁻¹)

- Defined as cycles/second

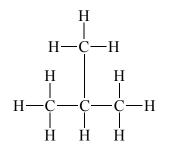
e.g. O-H bond can be seen around \sim 3400cm⁻¹ in an IR spectrum

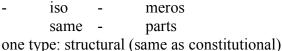

NEXT SECTION: Lecture Outline 2: ALKANES

Hydrocarbons – Compounds that contain only C and H

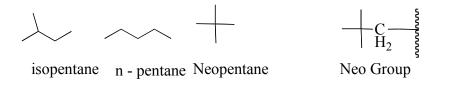
- Alkanes contain only single bonds (C-H, C-C)
- Alkenes = Olefins (C=C)
- Alkynes = Acetylenes ($C \equiv C$)

<u>Alkanes</u>

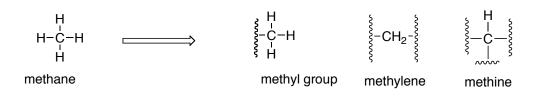

- All carbons are sp³ hybridized (optimal bond angle of 109°)
- Single bonds (σ bonds).
- Tetrahedral geometry at every carbon
- Held together by London (dispersion) forces

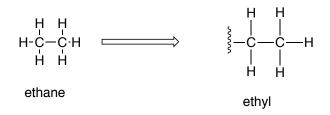

n-Butane: normal straight chain butane

NOTE: Propane has a boiling point of -42°C, which is higher than methane because it's chain-like structure allows for more surface area for London dispersion forces to take effect.

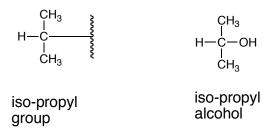

Ex #5) C_4H_{10} , isobutene or i-Butane

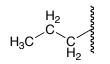
- Isomers are different compounds that have the same molecular formula and different structure. They have different physical properties (e.g. mp, bp, odour, biological effects)

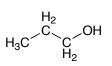

structural isomer = constitutional isomer


Groups (part of an alkane structure)

- In naming the particular group, drop the "ane" part and add "yl" to the name
- For example, meth<u>ane</u> \rightarrow meth<u>yl</u>

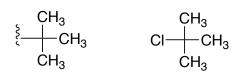

(i) Methyl group – CH₃


(ii) Ethyl group – CH₂CH₃



(iii) Isopropyl group


```
(iv) n-Propyl group
```



n-propyl chain

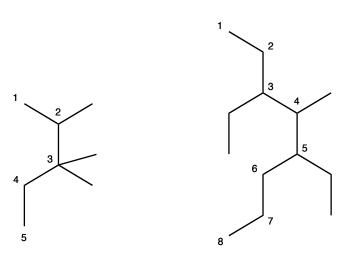
n-propyl alcohol

(v) *tert*-Butyl group

tert-Butyl chain tert-Butyl chloride

Systematic Nomenclature

RULES:


- 1. Find the longest chain
- 2. Number from end of the chain, so that the 1st branch point has the lowest number
- 3. Name the chain, then add prefixes (for the groups attached) with number and name the groups attached
- 4. Separate numbers and names by dash

Note: iso = second-to-last carbon of the chain is disubstituted (2 methyl groups) neo = second-to-last carbon of the chain is trisubstituted (3 methyl groups)

Prefixes for naming: Di (2), Tri (3), Tetra (4), Penta (5), Hexa (6) etc.

Naming Examples:

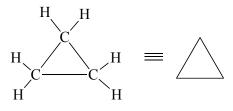
2,3,3-trimethylpentane

3,5-diethyl-4-methyloctane

Cycloalkanes:

General Molecular Formula of Alkanes

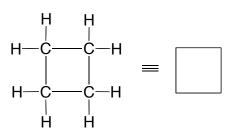
- No rings: general formula is C_NH_{2N+2}
- Each deviation of 2 hydrogens from the C_NH_{2N+2} formula is a degree of unsaturation
- Cylcoalkanes always have at least 1 degree of unsaturation

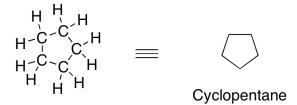

e.g.

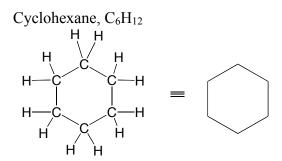
- $\circ~1$ Degree of unsaturation : $~C_{N}H_{2N}~~$ Alkanes with one ring or double bond
- $\circ~2$ Degrees of unsaturation : $C_{N}H_{2N\text{-}2}$ Alkanes with two rings or double bonds, or one each

Note: Ring Structure Naming

- Prefix with "cyclo"
- Start with numbering at point of maximum branching/most important functional group
- Number so as to give next branch/functional group lowest number


Cyclopropane, C₃H₆




- One degree of unsaturation (*n*-propane is C₃H₈)
 Not a structural isomer (different molecular formula)
- C-C-C bond angle (60°)
- Highly reactive due to ring strain

Cyclobutane, C₄H₈

Cyclopentane, C₅H₁₀

