Purification

- 1) Physical State Separation
 - Distillation
 - Crystallization
 - Precipitation
- 2) Chromatography
 - Media + Adsorption

Chemical Analysis

- Qualitative Analysis
- Quantitative Analysis

Qualitative Test for Inorganic or Organic Compound

Qualitative: Determine if you have the compound of interest

Organic	Inorganic
- Contains carbon	- No carbon
- Low mp $< 200 ^{\circ}$ C, low bp	- High mp & bp
- Burns frequently in air	- "Does not burn"
- Soluble in non-polar solvents	- Soluble in H ₂ O

Non-Polar solvent: Hexane, Benzene, Diethyl ether etc

THERE ARE MANY EXCEPTIONS!!!

E.g. Common table sugar is an organic molecule, however it dissolves in water

Quantitative Analysis

Quantitative: How much of the compound of interest (quantity) Amounts of atoms in compounds

Organic compound
$$\xrightarrow{\Delta \text{ (heat)}}$$
 CO₂ + H₂O + NO₂
MW (g/mol): 44 18
Compound (4.34 mg) $\xrightarrow{O_2}$ 10.35 mg 3.42 mg 0 mg
Contains C, H, O CO₂ H₂O NO₂

Note: Matter cannot be created or destroyed in a chemical reaction; therefore the amount of carbon in the CO_2 is equal to the amount of carbon in the starting sample.

Percent Composition

Weight of carbon (in sample) = $\frac{12 \text{ g/mol of C}}{44 \text{ g/mol CO}_2}$ x 10.35 mg of CO₂ = 2.82 mg of C

Molecular Weight (MW) of $CO_2 = 12$ (C) $+ 2 \times 16$ (O) = 44 g/mol

Weight of hydrogen = $\frac{2(1 \text{ g/mol of H}) \text{ x}}{18 \text{ g/mol of H}_2\text{O}}$ 3.42 mg of H₂O = 0.383 mg of H

NB: H₂O contains two hydrogen. MW of H₂O = $(2 \times 1) + 16$ H₂ O

Weight of oxygen = 4.34 mg - (2.82 mg of C + 0.383 mg of H) = 1.14 mg of O

Now one can calculate percentage composition:

% Composition:

% C = $\underline{\text{Mass of carbon}} \times 100\%$ Mass of sample	=	<u>2.82 mg of C</u> x 100% 4.34 mg	= 65.1%
$H = \frac{0.383 \text{ mg of H}}{4.34 \text{ mg}} = 8.83\%$			
% O = 100% - 65.1% - 8.83% = 26.19	%		

The empirical (and with additional data, molecular formula) can be determined from % composition

Determining the empirical experimental formula:

Definition: Empirical formula is the ratio of atoms to each other in a molecular formula

There are three steps to calculate the empirical formula:

- 1) Divide each percentage (%) by the atomic weight of the element \rightarrow crude ratio
- 2) Divide each crude ratio by the smallest crude ratio \rightarrow refined ratio
- 3) Multiply the refined ratio by an integer value $(x_2, x_3, x_4...) \rightarrow$ integral ratio

% Composition	Crude Ratio	Refined Ratio	Integral Ratio
65.1 % C	65.1 / 12.0 =	5.42 / 1.63 =	$3.34 \ge 3 = 10$
	5.42	3.34	
	(% C / At Wt C)		
8.83 % H	8.83 / 1.01 =	8.76 / 1.63 =	5.39 x 3 = 16
	8.76	5.39	
26.1 % O	26.1 / 16.0 =	1.63 / 1.63 =	$1.00 \ge 3 = 3$
	1.63	1.00	

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Using this formula an empirical weight can be calculated.

C: $10 \times 12 = 120$ g/mol H: $16 \times 1 = 16$ g/mol O: $3 \times 16 = 48$ g/mol

 $C_{10}H_{16}O_3 = 184 \text{ g/mol}$

Note: Suppose the molecular weight is given as 368 g/mol, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $C_{20}H_{32}O_6$. The molecular weight can be independently determined via mass spectrometry.

Gas Law: (Different kinds of units for pressure and volume can be used provided the value of the gas constant is adjusted to those units)

PV = nRT P = Pressure in atm V = Volume in L n = Moles T = Temperature in °K; K and °C are the same size, but 0 K = -273 °C

R is a constant
$$\frac{0.082 \text{ L}^{-} \text{ atm.}}{\text{mol} \cdot \text{K}}$$

Standard conditions for temperature and pressure (STP)

Old definition of STP used in this course Standard pressure is 1 atmosphere, or 760 mmHg; standard temperature is 273 K 1 mol of gas occupies 22.4 L at STP. –

<u>Sample Question</u>: A certain amount of N_2 gas occupies a volume of 3 mL at 750 mmHg and room temperature (298 K). What volume it will occupy at standard pressure and temperature (STP)?

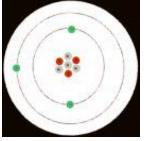
 $\frac{P_1 V_1}{P_2 V_2} = \frac{nRT_1}{nRT_2} \qquad \text{divide equations to give} \qquad \frac{P_1 V_1}{P_2 V_2} = \frac{T_1}{T_2}$

$P_1 = 760 \text{ mmHg}$	$T_1 = 273 \ ^{\circ}K$	$V_1 = ?$
$P_2 = 750 \text{ mmHg}$	$T_2 = 298 \ ^{\circ}K$	$V_2 = 3 mL$

Solve for V₁

 $V_1 = \frac{T_1 P_2 V_2}{T_2 P_1} = \frac{(273 \text{ °K})(750 \text{ mmHg})(3 \text{ mL})}{(298 \text{ °K})(760 \text{ mmHg})} = 2.71 \text{ mL}$

<u>Question</u>: How many moles of N_2 is 2.71 mL at STP and what is its mass?


Note: 1 mole of an ideal gas occupies 22.4 L at STP.

 $2.71 \times 10^{-3} \text{ L} \times \frac{1 \text{ mole}}{22.4 \text{ L}} = 1.21 \times 10^{-4} \text{ moles of } N_2$

 $1.21 \times 10^{-4} \text{ mol} \times 28 \text{ g/mol} = 3.4 \text{ mg of } N_2$

Atomic Theory:

- Neils Bohr (1913) - Won the Nobel prize for his atomic theory - NOT fully correct

- The neutrons (no charge) and protons (positively charged) occupy a dense central region called the nucleus (p⁺ +N)
- The electrons (negatively charged) orbit the nucleus much like planets orbiting the Sun

- de Broglie (1924) - His 12 page PhD thesis won him the Nobel Prize

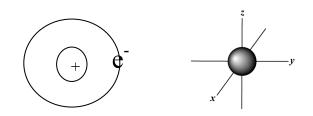
• He proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave - particle duality)

Particles \leftrightarrow Waves

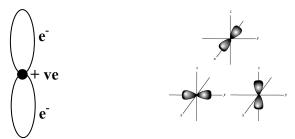
Often the electron density distribution is called an "orbital" by chemists

- The orbitals of an atom are described by wave functions (mathematical equations)
- These have no direct physical meaning, but when squared describe electron density

 ψ = Wave function


 ψ = orbital

$$\psi^2$$
 = (orbital)² = electron density distribution


For the hydrogen (H) atom: >95% of electron density is found in a sphere with diameter of 1\AA (10^{-8} cm)

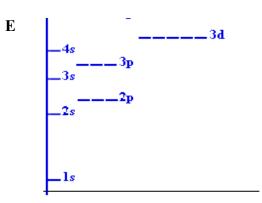
Orbitals:

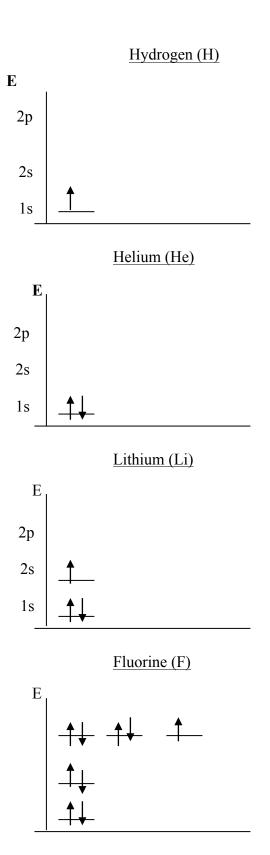
1. s-Orbital - Spherical shaped (electron density)

2. *p*-Orbital - Dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Basic Principles:

- Like charges repel each other; unlike charges attract each other
- Atoms want to have an inert gas electron configuration (isoelectronic with inert gas, such as He, Ne, Ar. Helium is the inert gas that hydrogen can be isoelectronic with)


Atoms	Protons (+) = Atomic #	<u>Neutrons</u>	<u>1s electrons</u>	<u>2s electrons</u>	<u>2p electrons</u>
Н	1	0	1		
He	2	2	2		
Li	3	3	2	1	


Rules for Filling Electron Orbitals – AUFBAU Rule (Building-Up Principle):

- 1) Add electron to the lowest energy orbital available
- 2) Maximum of two electron per orbital (each having opposite spin quantum number)
 - Pauli Exclusion Principle
- 3) Place one electron into each orbital of the same energy (degenerate orbitals), before adding a second electron
 - Hund's Rule of Maximum Multiplicity

Abbreviation of electron: e⁻ Mass Number = (Number of Protons) + (Number of Neutrons) Atomic Number – Number of Protons

Energy (E) Level Diagram for an Atom:

All elements want an inert gas configuration (e.g. Ne) and from the diagrams above, both Li and F are unhappy with unfilled orbitals (not in an inert gas configuration).