1

Energetics of Forming Bonds

As two hydrogen atoms come together, molecular hydrogen (H₂) is formed

Energy diagram of two hydrogen atoms interacting to form a bond:

LCAO

- Linear combination of atomic orbitals
- Combination of atomic orbitals of s- character gives molecular orbital called sigma molecular orbital (σ)

Hybridization:

- Mixing of atomic orbitals (with the wrong geometry for bonding) to form hybrid orbitals with the correct geometry for bonding
- Will only happen for bonding

ground state carbon atom atomic orbitals

sp³ hybridized carbon

sp³ Hybridization

- Single bonds in 2nd row elements
- Tetrahedral geometry
- Angle between two H atoms in methane: 109°, close to that with other elements
- Often free rotation around single bonds
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)
- Each line in a structure represents 2 e⁻
- Dashed wedge (......): Away from you / into the page

sp² Hybridization

- Double bonds in the 2nd row
- Planar geometry
- Angle between two atoms: 120°
- No free rotation around double bonds because the p orbitals have to line up
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)

4

sp Hybridization

- Triple bonds -
- Linear geometry -
- No free rotation around triple bonds -
- Angle between two atoms: 180° -

e.g. Acetylene/Ethyne

H-

formed through p_v and p_z

Εŀ

 C_{A}

 $C_{A} \\$

acetylene = ethyne

py

Hybridization (sp³ vs sp²)

- Sp³ hybridized atoms have 4 "things" attached and has a tetrahedral geometry
- Sp² hybridized atoms have 3 "things" attached and has a planar geometry

Hybridization (sp³ vs sp²) cont.

Overlap of p orbitals to form pi (π) bonds precents free rotation around double bonds e.g. Aldehyde

The CH₂ is sp³ hybridized, the atoms attached to it have a bond angle of 109° The carbonyl carbon is sp² hybridized, the atoms attached to it have a bond angle of 120° The oxygen contains two lone pairs (not drawn), it is sp² hybridized

Size and Shape of Molecules: determined by bond lengths and bonding type

- Geometry is dictated based on filled orbitals moving as far apart as possible
- A bond length between hydrogen and a 2nd row element is approximately 1A

NOTE THE FOLLOWING (Estimated bond length between atoms)

Representation of Molecules

- Show only electrons in outer (valence) shell
- Non-bonding electrons (lone pairs) may or may not be shown
- Use element symbols, but carbon can be represented by point of angle or end of line
- Hydrogens with bonds to them from <u>carbon</u> are optional; show others.
- Each line in a structure represents 2 e⁻
- Dashed wedge (................): Away from you / into the page

Examples:

2. Tetrahydrofuran (THF)

NB: Oxygen in the stable uncharged state 7211 ns two bonds with 2 lone pairs of electrons

NB: Nitrogen in the stable uncharged state forms three bonds with 1 lone pair of electrons

NB: Functional Group in Tetrahydrofuran is ETHER

ETHER

3. Conine (Poison Hemlock)

Chemical Formula: C₈H₁₇N Molecular Weight: 127.23

Functional group in Conine is AMINE

Functional groups in testosterone (alkene and ketone and alcohol)