Definitions

- Chemistry: Study of matter
- **Science**: way of worldview
- **Organic Chemistry**: Study of compounds containing carbon. Chemical symbol of carbon is C
- Chemical symbol: Code for chemical element
- **Atom**: Is the smallest possible particle that defines a complete chemical element. Fundamental building blocks of chemistry.
 - They are composed of neutrons, protons (+), and electrons (-)
- Every atom is composed of a **nucleus** (positively charged composed of protons and neutrons) and one or more electrons bound to the nucleus
- **Molecules**: Discrete (bonded) arrangement of atoms. Bonds can be covalent or ionic.
 - Changing the arrangement or connections changes the molecule and its physical properties (color, density, solubility, melting point, boiling point)
- **Compound**: Collection of molecules of the same type
 - Water (H₂O), Cholesterol (27 carbons, white crystalline powder, average male contains 80 g)
- **Atomic Number:** Number of protons in the nucleus of an atom (Z)
- **Atomic Weight**: Mass of protons (p⁺) and neutron (n) (unit: amu)

Isotopes

- Isotopes – same element that contain equal number of protons but different number of neutrons

Example 1:

- \circ ¹H = Hydrogen = 1p⁺ + 1e⁻
 - 90% of electron density of the hydrogen atom is within one Angstrom
- \circ ²H = Deuterium = 1p⁺ + 1n + 1e⁻ (Isotope of Hydrogen)
- o ${}^{3}H = Tritium = 1p^{+} + 2n + 1e^{-}$ (Isotope of Hydrogen, radioactive, $T_{1/2} = 12.2 \text{ yrs}$)

Example 2:

- \circ ¹²C = 6p⁺ + 6n (¹²C : 12 amu atomic weight, atomic No. 6)
- \circ ¹³C = 6p⁺ + 7n (Isotope of Carbon, Stable, 1.1% abundance)
- o $^{14}\text{C} = 6\text{p}^+ + 8\text{n}$ (Radioactive isotope with long half-life, $T_{1/2} = 5740$ yrs; used in Carbon dating)
 - $1n \rightarrow 1p^+ + 1e^-$ to become ¹⁴Nitrogen
- Molecular Weight (MW): Mass of atoms in a molecule
 - \circ H₂O: MW = [(2 x 1 g/mol)H + (1 x 16 g/mol)O] = 18 g/mol

Physical Properties

- o Defined by chemical structure
- Melting point (mp) and boiling point (bp): Each compound has a characteristic mp and bp.
- Taste, appearance, odour, and biological properties (how it interacts with other molecules).
- Light Absorption (hv): h stands for Planck's constant (6.626 x 10⁻³⁴ Js; v stands for frequency
- O Density (symbol is ρ , rho) (unit = g/cm³)
- O Density of water is 1.0 g/cm³, compounds that are less dense than water will float on top if they are not miscible (infinitely soluble)
- Absorption of radiation (light)
- \circ Solubility \sim most organic solvents dissolve in other organic solvents (like dissolves like); some organic molecules dissolve in H₂O which is inorganic (ex. Sugar)

Typical Molecule

- o A few Angstroms (Å) in length: Bond length C-H is 1 Å, C-C is 1.5 Å
- $0 1 Å = 10^{-8} cm$
- \circ 1 Å = diameter of 1 hydrogen atom

Example: Cholesterol is 17 Å across. If you lined all of the cholesterol molecules in an 80 g bottle end to end it would wrap around the earth roughly 5,000,000 times.....

Basic Principles

- 1. Like charges repel, unlike charges attract.
- 2. Atoms want inert gas configuration of electrons
 - Same configuration as Helium, Neon, Argon, Xenon, and Krypton.
 - Can be attained through either ionic bonding or covalent bonding

Mole Concept

- 1 mole = 6.02×10^{23} (Avogadro's number) (can be atoms, molecules etc.)
- 1 mole H = 1 g
- Mole concept relates to MW and Atomic weight
- 18 g of H_2O is 6.02×10^{23} molecules = 1 mole of H_2O or 6.02×10^{23} molecules of water
- Carbon has 12 grams per mol, Oxygen has 16 g per mol, so for CO₂ we can calculate that it has 44 g/mol
- D (deuterium) = ${}^{2}H$, $1p^{+} + 1n = 2$ g/mol, it's an isotope
- $D_2O = 20g/\text{mol}$, known as heavy water.

Purity of Compounds

- 1 mole of H_2O (6.02 x 10^{23} molecules) = 18 g, then add 1 x 10^6 other molecules (e.g. sugar) \rightarrow the purity of the water would be 99.999 999 999 999 999%.
- Purity: A pure compound shows no change in physical properties upon attempts to further purify (purity is a relative term).
- o Purity: A pure compound has a discrete and unique physical properties.

Qualitative Test for Inorganic or Organic Compound

Qualitative Analysis: Determine if you have the compound of interest

Note that the structure of a molecule defines its physical properties

Organic	Inorganic
- Contains carbon	- Generally no carbon
- Low mp $<$ 200 °C, low bp	- High mp & bp (due to ionic bonding e.g.
- Burns frequently in air	NaCl)
- Non-polar	- "Does not burn"
- Soluble in non-polar solvents	- Polar
(e.g. oil)	- Soluble in H ₂ O

Non-Polar solvent: Hexane, Benzene, Diethyl ether etc

THERE ARE MANY EXCEPTIONS!!!

E.g. Common table sugar is an organic molecule, however it dissolves in water

Quantitative Analysis

Quantitative: How much of the compound of interest (quantity)

Amounts of atoms in a compound

$$N_2 + H_2O$$

$$[H] = Reduction$$
Organic compound
$$\Delta \text{ (heat)}$$

$$MW \text{ (g/mol): } 44$$

$$18$$

Compound (4.34 mg)
$$\longrightarrow$$
 10.35 mg 3.42 mg 0 mg
Contains C, H, O \longrightarrow CO₂ \longrightarrow H₂O \longrightarrow NO₂

Note: Matter cannot be created or destroyed in a chemical reaction; therefore the amount of carbon in the CO_2 is equal to the amount of carbon in the starting sample.

<u>Percent Composition</u> – how much of each atom is present in the sample

Weight of carbon (in sample) =
$$\underline{12 \text{ g/mol of C}}$$
 x $10.35 \text{ mg of CO}_2 = 2.82 \text{ mg of C}$
44 g/mol CO₂

Molecular Weight (MW) of
$$CO_2 = 12$$
 (C) $+ 2 \times 16$ (O) $= 44$ g/mol

Weight of hydrogen =
$$2(1 \text{ g/mol of H}) \text{ x}$$
 3.42 mg of H₂O = 0.383 mg of H 18 g/mol of H₂O

NB: H₂O contains two hydrogen. MW of H₂O =
$$(2 \times 1) + 16$$

H₂ O

Weight of oxygen = 4.34 mg sample - (2.82 mg of C + 0.383 mg of H) = 1.14 mg of O

Now one can calculate percentage composition:

% Composition:

%
$$C = \underline{\text{Mass of carbon}} \times 100\%$$
 = $\underline{2.82 \text{ mg of } C} \times 100\%$ = 65.1% Mass of sample 4.34 mg

% H =
$$\frac{0.383 \text{ mg of H}}{4.34 \text{mg}}$$
 = 8.83%
% O = 100% - 65.1% - 8.83% = 26.1%