Definitions

- Chemistry: Study of matter
- Organic Chemistry: Study of compounds containing carbon. Chemical symbol of carbon is C
- Chemical symbol: Code for chemical element
- Atom: Is the smallest possible particle that defines a complete chemical element
- They are composed of neutrons, protons (+), and electrons (-)
- Every atom is composed of a nucleus and one or more electrons bound to the nucleus
- Molecules: Discrete (bonded) arrangement of atoms
 - Changing the arrangement or connections changes the molecule and its physical properties
- Compound: Collection of molecules of the same type
 - Water (H₂O), Cholesterol (27 carbons, white crystalline powder, average male contains 80 g)
- Atomic Number: Number of protons in the nucleus of an atom (Z)
- Atomic Weight: Mass of protons (p⁺) and neutron (N) (unit: amu)
 - \circ ¹H = Hydrogen = 1p⁺ + 1e⁻
 - \circ ²H = Deuterium = 1p⁺ + 1N + 1e⁻
 - \circ ³H = Tritium = 1p⁺ + 2N + 1e⁻
 - $\circ {}^{12}C = 6p^+ + 6N ({}^{12}C : 12 \text{ amu atomic weight, atomic No. 6})$
 - \circ ¹³C = 6p⁺ + 7N (Isotope of Carbon, Stable, 1.1% abundance)
 - ${}^{14}C = 6p^+ + 8N$ (Radioactive isotope with long half-life, $T_{1/2} = 5740$ yrs) - $1N \rightarrow 1p^+ + 1e^-$ to become ${}^{14}Nitrogen$
- Molecular Weight (MW): Mass of atoms in a molecule
 - \circ H₂O: MW = [(2 x 1 g/mol)H + (1 x 16 g/mol)O] = 18 g/mol

Basic Principles

- 1. Like charges repel, unlike charges attract.
- Atoms want inert gas configuration of electrons
 Same configuration as Helium, Neon, Argon, Xenon, and Krypton.

Mole Concept

- 1 mole = 6.02×10^{23} (Avogadro's number) (can be atoms, molecules etc.)
- 1 mole H = 1 g
- Mole concept relates to MW and Atomic weight
- 18 g of H_2O is 6.02 x 10²³ molecules = 1 mole of H_2O or 6.02 x 10²³ molecules of water
- Carbon has 12 grams per mol, Oxygen has 16 g per mol, so for CO_2 we can calculate that it has 44 g/mol
- $D = {}^{2}H$, $1p^{+} + 1N = 2$ g/mol, it's an isotope
- $D_2O = 20g/mol$, known as heavy water.

Typical Molecule

- A few Angstroms (Å) in length: Bond length C-H is 1 Å, C-C is 1.5 Å
- \circ 1 Å = 10⁻⁸ cm
- \circ 1 Å = diameter of 1 hydrogen atom

Example: Cholesterol is 17 Å across. If you lined all of the cholesterol molecules in an 80 g bottle end to end it would wrap around the earth roughly 5,000,000 times.....

Physical Properties

- o Defined by chemical structure
- Melting point (mp) and boiling point (bp): Each compound has a characteristic mp and bp.
- Taste, appearance, odour, and biological properties (how it interacts with other molecules).
- o Light Absorption
- Density (symbol is ρ , rho) (unit = g/cm³)
- Density of water is 1g/cm³, compounds that are less dense than water will float on top if they are not miscible (infinitely soluble)
- Absorption of radiation (light)
- o Solubility

Purity of Compounds

- 1 mole of H₂O (6.02 x 10^{23} molecules) = 18 g, then add 1 x 10^{6} other molecules (e.g. sugar) → the purity of the water would be 99.999 999 999 999 999%.
- Purity: A pure compound shows no change in physical properties upon attempts to further purify (purity is a relative term).
- Purity: A pure compound has a discrete and unique physical properties

Qualitative Test for Inorganic or Organic Compound

Qualitative: Determine if you have the compound of interest

Note that the structure of a molecule defines its physical properties

Organic	Inorganic
- Contains carbon	- No carbon
- Low mp $< 200 ^{\circ}$ C, low bp	- High mp & bp
- Burns frequently in air	- "Does not burn"
- Soluble in non-polar solvents	- Soluble in H ₂ O

Non-Polar solvent: Hexane, Benzene, Diethyl ether etc

THERE ARE MANY EXCEPTIONS!!!

E.g. Common table sugar is an organic molecule, however it dissolves in water

Quantitative Analysis

Quantitative: How much of the compound of interest (quantity) Amounts of atoms in a compound

Organic compound
$$\longrightarrow$$
 CO₂ + H₂O
 A (heat)
MW (g/mol): 44 18
Compound (4.34 mg) $\xrightarrow{O_2}$ 10.35 mg 3.42 mg 0 mg
Contains C, H, O
CO₂ H₂O NO₂

Note: Matter cannot be created or destroyed in a chemical reaction; therefore the amount of carbon in the CO_2 is equal to the amount of carbon in the starting sample.

Percent Composition

Weight of carbon (in sample) = $\frac{12 \text{ g/mol of C}}{44 \text{ g/mol CO}_2}$ x 10.35 mg of CO₂ = 2.82 mg of C

Molecular Weight (MW) of $CO_2 = 12$ (C) $+ 2 \times 16$ (O) = 44 g/mol

Weight of hydrogen = $\frac{2(1 \text{ g/mol of H}) \text{ x}}{18 \text{ g/mol of H}_2\text{O}}$ 3.42 mg of H₂O = 0.383 mg of H

NB: H₂O contains two hydrogen. MW of H₂O = $(2 \times 1) + 16$ H₂ O

Weight of oxygen = 4.34 mg - (2.82 mg of C + 0.383 mg of H) = 1.14 mg of O

Now one can calculate percentage composition:

% Composition:

% C = Mass of carbon x 100%	=	<u>2.82 mg of C</u> x 100%	= 65.1%
Mass of sample		4.34 mg	

% H = <u>0.383 mg of H</u> = 8.83%

4.34mg % O = 100% - 65.1% - 8.83% = 26.1%

The empirical (and with additional data, molecular formula) can be determined from % composition

Determining the empirical experimental formula:

Definition: Empirical formula is the ratio of atoms to each other in a molecular formula

There are three steps to calculate the empirical formula:

- 1) Divide each percentage (%) by the atomic weight of the element \rightarrow crude ratio
- 2) Divide each crude ratio by the smallest crude ratio \rightarrow refined ratio
- 3) Multiply the refined ratio by an integer value $(x_2, x_3, x_4...) \rightarrow$ integral ratio

% Composition	Crude Ratio	Refined Ratio	Integral Ratio
65.1 % C	65.1 / 12.0 =	5.42 / 1.63 =	$3.34 \ge 3 = 10$
	5.42	3.34	
	(% C / At Wt C)		
8.83 % H	8.83 / 1.01 =	8.76 / 1.63 =	5.39 x 3 = 16
	8.76	5.39	
26.1 % O	26.1 / 16.0 =	1.63 / 1.63 =	$1.00 \ge 3 = 3$
	1.63	1.00	

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Using this formula an empirical weight can be calculated.

C: $10 \times 12 = 120$ g/mol H: $16 \times 1 = 16$ g/mol O: $3 \times 16 = 48$ g/mol

 $C_{10}H_{16}O_3 = 184 \text{ g/mol}$

Note: Suppose the molecular weight is given as 368 g/mol, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $C_{20}H_{32}O_6$.

The molecular weight can be independently determined via mass spectrometry.