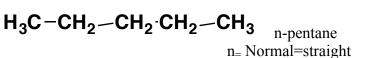
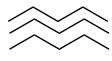

London Forces (Temporary Dipoles):

- Also know as London dispersion forces
- Distortion of filled outer shell electrons
- Principal effect in hydrophobic interactions

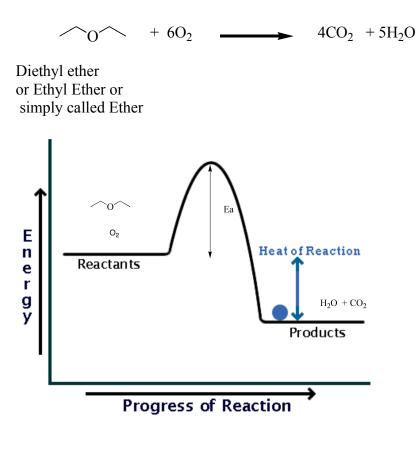
Atoms	Boiling Point	
Не	-269 °C	Small atom/ Low polarizability
Ne	-246 °C	I
Ar	-186 °C	
Kr	-153 °C	\downarrow
Xe	-108 °C	Large atom/ High polarizability

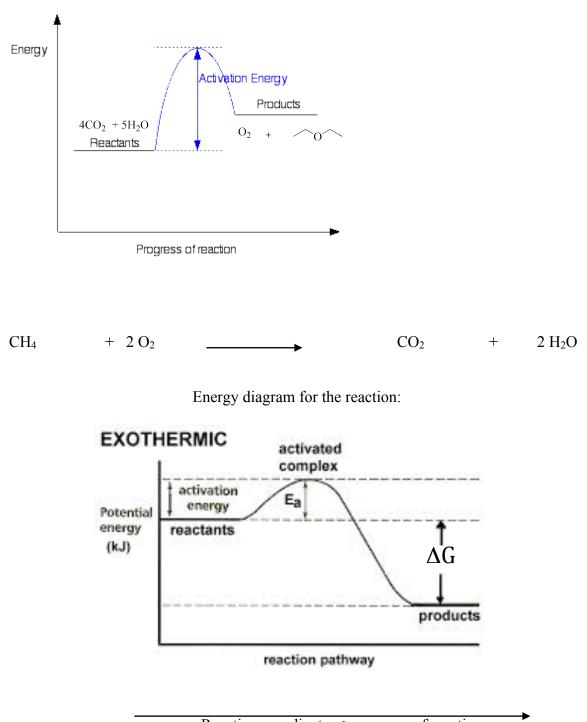

CH₄ associates with CH₄ due to London forces


• The larger the atom (expanded electron density), the easier the formation of temporary dipoles

H₃C^{WW}CH₃ CH₃

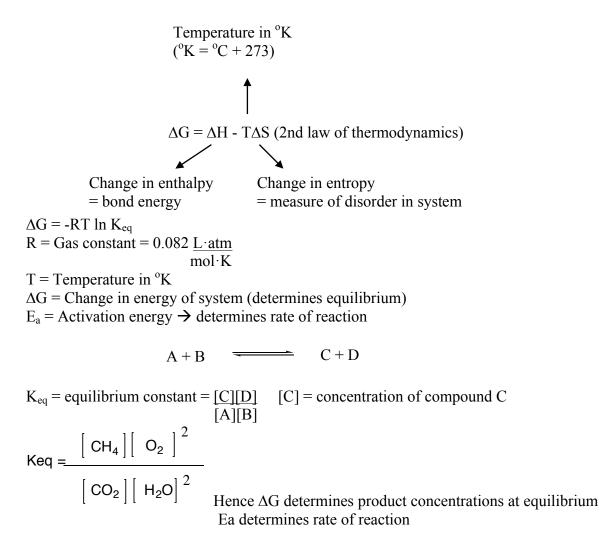
Neopentane (C_5H_{12})


C₅H₁₂ hydrophobic bonding

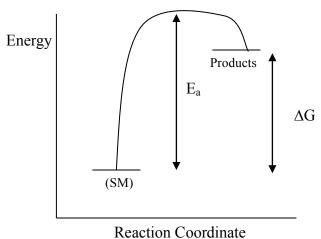

n-pentane is a liquid at 20° C - why is it a liquid? Because its temporary dipoles – it is not miscible in water – water would rather hydrogen bond to itself – like dissolves like

Reactivity/ Reactions

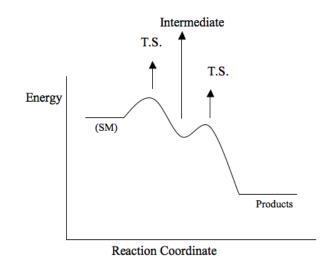
Progress of reaction is also called Reaction Coordinate S.M. = starting material or reactants (e.g. diethyl ether, oxygen)



Reaction coordinate => progress of reaction


Reactants or starting material (S.M.): CH_4 and O_2 Products: CO_2 and H_2O $\Delta E = \Delta G$: Gibbs free energy (total) change for the reaction -

- This reaction is an exothermic reaction, heat is released during reaction
- ΔG = negative for an exothermic (heat releasing) reaction, positive for endothermic reaction
- E_A = Activation energy: minimum amount of energy required to activate molecules or atoms to be able to undergo a chemical reaction.
- Activated complex or transition state (T.S): Highest energy point in a reaction pathway in which bonds are being formed and broken simultaneously. A T.S. cannot be observed or isolated. Should not be confused with and an intermediate.


Thermodynamic of a chemical reaction:

Endothermic Reaction: Positive ΔG .

Reaction proceeding through an intermediate

NB: The Rate Determining Step is the TS with the larger E_A , which will be the slowest step; that is for the diagram to the left, the first step is the rate determining step.

Change in Entropy $\Delta G = \Delta H - T\Delta S$ (2nd law of thermodynamics) \downarrow Change in enthalpy = bond energy Exothermic $\Delta G = Negative$

Endothermic $\Delta G = Positive$

TS = Transition State: Point where bonds are partially broken and partially formed Intermediate: Short live species

Bond Energy

Bond	Bond Energy (kcal/mol)
H-C	99
H-O	111
C-C	83
C=O	179
O=O	119

e.g.)
$$CH_4 + 2 O_2 \xrightarrow{\Delta} CO_2 + 2 H_2O - Exothermic reaction (releases Energy (E))$$

 $\Delta E_{reaction}$ = ΔE_{SM} - ΔE_{pdt}

For CH ₄ :	4 x C-H bond	$ls = 4 \times 99$	= 396 kcal/mol	ΔE_{SM} = sum of bonds
	2 x O=O	= 2 x 119	= <u>238 kcal/mol</u>	broken (enthalpy)
	ΔE_{SM}		= 634 kcal/mol	

For products:	2 C = O = 2	2 x 179 = 358 kcal/mol	ΔE_{pdt} = sum of bonds formed
	4 H-O = 4	$4 \ge 111 = 444 \text{ kcal/mol}$	
	ΔE_{pdt}	= 802 kcal/mol	

 $\Delta E_{reaction} = 634 \text{ kcal/mol} - 802 \text{ kcal/mol} = -168 \text{ kcal/mol}$ (exothermic reaction, energy released)

Acids and Bases

Bronsted – Lowry :

- An acid donates proton (H⁺)
- A base accepts a proton (H⁺)

HCI \longrightarrow H⁺ + CI⁻ NaOH \longrightarrow Na⁺ + OH⁻

- HCI + NaOH → NaCI + H-OH
- Very fast reaction as HCl is a strong acid and NaOH is a strong base. NaCl is a weak base (weak conjugate base) and H₂O is a weak acid (weak conjugate acid).

Lewis Acid/Base:

- An acid accepts a pair of electrons
- A base donates a pair of electrons

Examples of Lewis acids: \mathbf{H}^+ **A**

• Every Bronsted-Lowry acid/base is also a Lewis acid/ base. The converse statement is not true; not all Lewis acids/bases can be classified as a Bronsted-Lowry acids/bases.

$$H \xrightarrow{\frown} A \xrightarrow{\frown} H^{\oplus} + \xrightarrow{\bigcirc} A \qquad K_{eq} = K_a = \underbrace{[H^+][A^-]}_{[HA]} \qquad K_a = acidity constant$$

Ex #1) Methane:

$$H-CH_3 \longrightarrow H^+ + CH_3^-$$

$$K_a = [\underline{H^+}][\underline{CH_3}] = 10^{-46}$$

[HCH₃]

$$pK_a = -logK_a = 46$$

Ex # 2) Ammonia Gas:

• Ammonia gas is a better acid compared to methane (bigger K_A), because nitrogen is more electronegative than carbon. It can hold a negative charge easier than carbon.

NB: The lower the pKa the more acidic

"pKa of Ammonia" in biological system

$$\begin{array}{ccc}
H & H \\
H - N - H & \longrightarrow & N - H + H^{\oplus} \\
H & H & H \\
\end{array}$$
Ammonium Cation $pK_a = 9.3$

Ex #3) Water:

$$H-O-H \longrightarrow H^{+} + \bigoplus_{H^{+}} \bigoplus_{H^{+}} \bigoplus_{H^{+}} K_{a} = [H^{+}][OH] = 10^{-15.7}$$

$$pK_{a} = -logK_{a} = 15.7$$

$$Na^{+} + OH + CH_{4} \longrightarrow H^{+}O-H + :CH_{3}$$

$$Weak \qquad Weak \qquad Strong \qquad Strong \qquad Base$$

NB: Oxygen is more electronegative than nitrogen, which makes water more acidic than ammonia. Nitrogen more electronegative than carbon and that makes ammonia more acidic than methane The equilibrium above lies far (exclusively) to the left. Hydroxide will NOT deprotonate methane.