1. 1,2-Dichlorobenzene

8. Benzene

Intermolecular Forces: (forces present between molecules)

- Attractive intermolecular forces:
 - i) Hydrogen bonding strongest on per atom basis (e.g. base recognition in forming DNA helix) (also in RNA)
 Linus Pauling development of H bonding
 - ii) **Dipole-dipole interaction** (Intermediate strength)
 - iii) **London forces** (temporary dipole; hydrophobic bonding) weakest on per atom basis distortion of inner shells.

Electronegativity:

- An atom's desire for electrons (negative charge).
- On the periodic table, electronegativity increases as you go from left to right (up to inert gases, which are not electronegative) and as you go from down to up
- Halogens (F, Cl, Br, I) are highly electronegative
 - i.e. Fluorine is the most electronegative atom (wants to gain the inert gas configuration of Ne) and is small (has few electrons)

- It influences acidity of H's attached, as well as the intermolecular forces between molecules.

Hydrogen Bonding:

-

- Strongest intermolecular attractive force
 - Need H directly attached to a very electronegative atom (N, O, F, Cl, Br, I) • Known as <u>donors</u>
- Very electronegative atom needs a lone pair of electrons (N, O, F, Cl, Br, I)
 - Known as acceptors

e.g. H-O-H (water)

Hydrogen bond

(1-Propanol)

- Can hydrogen bond to itself
 - Has H directly attached to oxygen
- Has a high boiling points relative to its size due to hydrogen bonding
- Can dissolve in water very well

- Oxygen is electronegative and it is sp³ hybridized
- The partial positive charge on H and the partial negative charge on O lead to their attraction
- Results in high boiling point (100 C) and high melting point by self-association
- HF, H₂O and NH₃ form hydrogen bonds
- Water is a liquid at RT while ammonia is a gas
- Oxygen is more e-neg than nitrogen, so the protons on water have a higher positive partial charge than the protons on ammonia
- In an ammonia solution, water would be the hydrogen bond donor and ammonia would be the acceptor
- Water dissolves ammonia very well up to 18M

Diethyl Ether

- Cannot hydrogen bond to itself
 - Has no H directly attached to oxygen (No donor)
 - Can H-bond to water because it has an acceptor
- Has a low boiling point
- Will not dissolve in water very well (although a little bit will be dissolved)

Can't form H-bonds with itself (not

Lone pairs on O can form H-bonds

with water (H-bond acceptor)

Poorly soluble in water

 $: O \xrightarrow{H} C \xrightarrow{C} CH_3$ $: O \xrightarrow{C} N$ $| CH_3$

Dimethylformamide

Can't form H-bonds with itself (not a H-bond donor) Lone pairs on O and N can form H-bonds with water (H-bond acceptor) Infinitely soluble (miscible) in water

Note: The more H-bonds it can form, the more soluble it is in water

Dipole-Dipole Interactions:

Dipole drawing convention:

 δ^+ δ^-

Partial positive charge is the "plus" end, partial negative charge is the arrow head

1. Methane; CH₄

a H-bond donor)

- C and H have ~same electronegativity
- Non-polar (net-zero ~dipole); gas at room temperature
- Low BP -164 °C (this is relatively low compared to water at 100 °C)
- Low MP -182 °C
- 2. Chloromethane, methyl chloride; CH₃Cl

- H and C have similar electronegativity values (non-polar bond)

- Cl is very electronegative due to the fact that it only needs one electron to get inert gas configuration.
- Electron density is pulled toward the chlorine atom, creating a net dipole toward chlorine atom. A net dipole is the vector sum of individual bond dipoles.
- Has a higher MP and BP than methane

Dipoles in different molecules tend to line-up temporarily with each other (partial positive / negative charge on the molecule) – causes molecules to "stick" to each other

3. Dichloromethane, methylene chloride; CH₂Cl₂

- Liquid at room temperature BP 40 °C MP 95 °C
- More polar than chloromethane
- Not miscible with water
- 4. Trichloromethane, chloroform; CHCl₃

- More polar than methylene chloride BP 61 °C MP 64 °C
- Higher than dichloromethane due to dipole dipole interaction
- 5. Tetrachloromethane, carbon tetrachloride; CCl₄ (toxic)

- Non-polar molecule (net-zero dipole)

- Has temporary dipoles since chlorine is polarizable (see below), BP ~77 °C
- Historically used as a dry-cleaning fluid

RECALL:

There are three attractive intermolecular forces

- i) Hydrogen bonding
 - Donors: H on O, N, or halogen
 - Acceptors: Lone pair on O, N, or halogen
- ii) Dipole-dipole interaction

$$\delta^+$$
 δ^-

iii) London forces (temporary dipole; hydrophobic bonding)

London Forces:

- Also known as dispersion forces, temporary dipoles or Van der Waals forces (less good)
- Weakest attractive force
- Distortion of filled outer shell electrons
- Principal effect in hydrophobic interactions

Atoms	Boiling Point	
Не	-269 °C	Small atom/ Low polarizability
Ne	-246 °C	
Ar	-186 °C	
Kr	-153 °C	↓
Xe	-108 °C	Large atom/ High polarizability

Steric effect: interaction of a filled shell of electrons. Causes repulsion. • The larger the atom (expanded electron density), the easier the formation of temporary dipoles.

This is the reason why CH₄ associates with CH₄, due to London forces

temporary association

C₅H₁₂ hydrophobic bonding:

n-Pentane has a boiling point of 35 °C; therefore, it is a liquid at room temperature - why is it a liquid? Because its temporary dipoles – it is not miscible in water – water would rather hydrogen bond to itself – like dissolves like.

Example: DMF - dimethylformamide

donor acceptor

soluble in water

Reactivity/ Reactions

Exothermic Reaction: Negative ΔG

Example: Combustion of Pentane

Progress of reaction is also called Reaction Coordinate S.M. = starting material or reactants (e.g. pentane, oxygen) Energy diagram for the reaction:

Reaction coordinate => progress of reaction

- The above reaction is an exothermic reaction, heat is released during reaction - ΔG will be negative ($\Delta G < 0$) for an exothermic (heat releasing) reaction but will be positive ($\Delta G > 0$) for endothermic reaction.

- E_A = Activation energy: minimum amount of energy required to activate molecules or atoms to be able to undergo a chemical reaction. Controls the rate of the reaction. - Activated complex **or transition state (T.S):** Highest energy point in a reaction pathway in which bonds are being formed and broken simultaneously. A T.S. cannot be observed or isolated. Should not be confused with and an intermediate.

Thermodynamics of a chemical reaction:

 $\Delta G = Change in energy of system (determines equilibrium)$ $E_a = Activation energy \rightarrow determines rate of reaction$ $K_{eq} = equilibrium constant = [C][D] \qquad [C] = concentration of compound C$ [A][B] $A + B \longleftarrow C + D$

$$\Delta G$$
 determines product concentrations at equilibrium E_a determines rate of reaction

Reaction proceeding through an intermediate

Reaction Coordinate

Endothermic Reaction: Positive ΔG

If the reverse of the combustion of pentane were to happen:

<u>Summary:</u>

 $\overline{\Delta E} = \Delta G$: Gibbs free energy (total) change for the reaction

Change in Entropy

$$\downarrow$$

 $\Delta G = \Delta H - T\Delta S$ (2nd law of thermodynamics)
 \downarrow

Exothermic reactions have $\Delta G = Negative$

Endothermic reactions have $\Delta G = Positive$

TS = Transition State: Point where bonds are partially broken and partially formed

Intermediate: Short lived species

Bond Energy energy needed to break bond into two

Example:

Radicals

Change in enthalpy = bond energy

 $H-CH_3 \iff H \bullet + \bullet CH_3$

Bond	Bond Energy (kcal/mol)
H-C	99
H-O	111
C-C	83
C=O	179
O=O	119