Ionic Bonding

Lithium fluoride is an example of <u>ionic bonding</u> in which positive and negative species are bonded to each other. Li could lose $1e^{-}$ from 2s orbital to become isoelectronic to He (as Li⁺) and F could gain $1e^{-}$ to become isoelectronic to Ne (as F⁻).

 Li^{o} + F^{o} \rightarrow Li^{+} + F^{-} Loss of 1e⁻ Gain of 1e⁻

Isoelectronic = Same electron configuration

In space, Li^+ and F^- would be attracted to each other In solution, Li^+ and F^- might be separated due to solvation (e.g. water would surround)

In a solid, Li^+ and F^- would form a cubic crystalline solid

Electronegativity

- Desire of atoms for electrons
- Electronegativity increases from left to right across the period in the periodic table (atoms get stronger attraction as the nuclear charge increases
- Electronegativity increases from bottom to top in the group (Distance between nucleus and valence shell decreases)

Covalent Bonding

- <u>Sharing</u> of electrons between the atoms
- More common in organic chemistry

Electronic configuration of carbon (C):

- Atomic number = 6
- Atomic weight = 12

- Carbon needs to gain or lose 4e⁻ to get an inert gas configuration, but this would result in unfavourable charge buildup:

- C^{4+} is isoelectronic with He

- C⁴⁻ is isoelectronic with Ne

- So, carbon makes up to 4 bonds to <u>share</u> 4e⁻ (covalent bonding)

Energetics of Forming Bonds

1 Å R = Inter-nuclear distance

1Å is the average H-H bond distance

Electronic configuration of carbon (C):

- Atomic number = 6
- Atomic weight = 12

- Carbon needs to gain or lose 4e⁻ to get an inert gas configuration, but this would result in unfavourable charge buildup:

- C^{4+} is isoelectronic with He

- C⁴⁻ is isoelectronic with Ne

- So, carbon makes up to 4 bonds to <u>share</u> 4e⁻ (covalent bonding)

Hybridization:

- Mixing of atomic orbitals (with the wrong geometry for bonding) to form hybrid orbitals with the correct geometry for bonding

sp³ Hybridization

- Single bonds
- Tetrahedral geometry
- Angle between two H atoms in methane: 109°, close to that with other elements
- Often free rotation around single bonds
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)

ground state carbon atom atomic orbitals

Figure: Hybridization of 2^{nd} shell *s* (one) orbitals and *p* (three) orbitals of carbon

sp² Hybridization

- Double bonds -
- Planar geometry -
- Angle between two atoms: 120° _
- No free rotation around double bonds -
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond) -
- Overlap of p atomic orbitals with s component gives pi molecular orbital (bond) -

Molecular Orbital

- Linear combination of atomic orbitals
- Combination of atomic orbitals of s- character gives molecular orbital called sigma molecular orbital (σ)
- Combination of atomic orbitals of p-character gives molecular orbital called pi molecular orbital (π)

- When atomic orbitals overlap they form molecular orbitals.
- Double bond contains one σ bond and one π bond.
- σ bond has free rotation.
- π bond fixes geometry, does not allow for rotation around the double bond.

sp Hybridization

- Triple bonds
- Linear geometry
- No free rotation around triple bonds

Triple bond:

One sigma bond between the carbons plus two pi bonds formed through p_v and p_z

sigma (s of H and sp of C)

acetylene = ethyne

sp Hybridization

- Triple bonds
- Linear geometry
- No free rotation around triple bonds
- Angle between two atoms: 180°

e.g.) Acetylene/Ethyne

Representation of Molecules

- Show only electrons in outer (valence) shell
- Non-bonding electrons may or may not be shown
- Use element symbols, but carbon can be represented by point of angle or end of line
- Hydrogens and bonds to them from carbon are optional; show others.

- -
- -