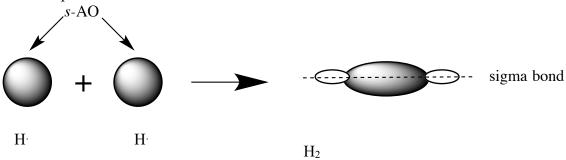
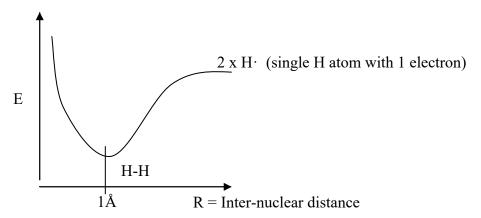

Chem 261 Sep 10, 2024



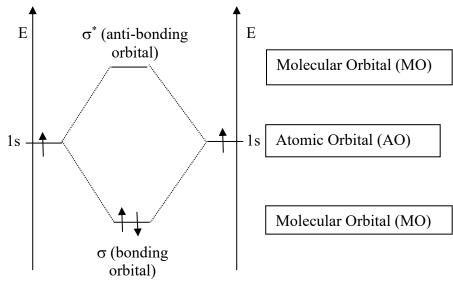
1Å is the average H-H bond distance

 $e.g. \ H_2$

Orbital representation:

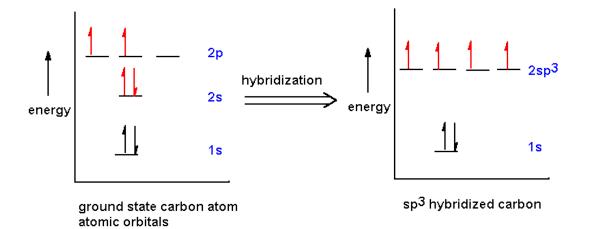

LCAO

- Linear combination of atomic orbitals
- Combination of atomic orbitals of s- character gives molecular orbital called sigma molecular orbital (σ)

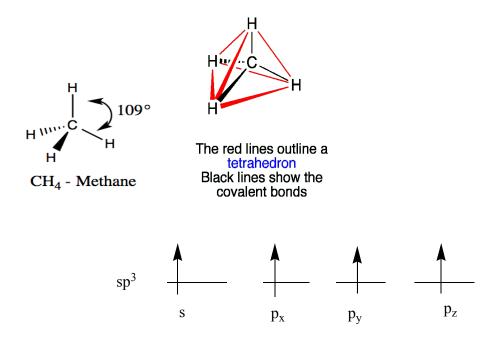

Recall:

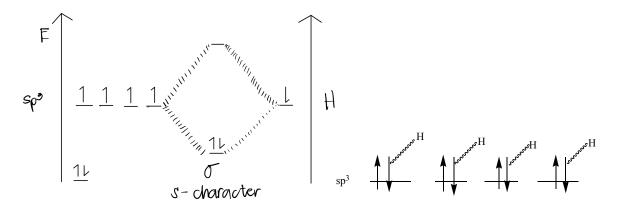
As two hydrogen atoms come together, molecular hydrogen (H₂) is formed

Energy diagram of two hydrogen atoms interacting to form a bond:

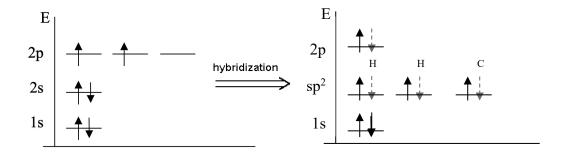


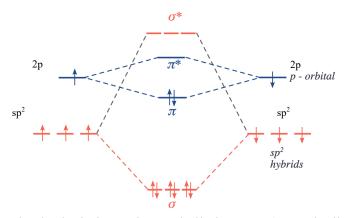
 1\AA is the average H-H bond distance e.g. H_2

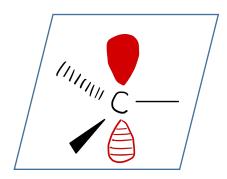

Hybridization:


- Mixing of atomic orbitals (with the wrong geometry for bonding) to form hybrid orbitals with the correct geometry for bonding
- Will only happen for bonding

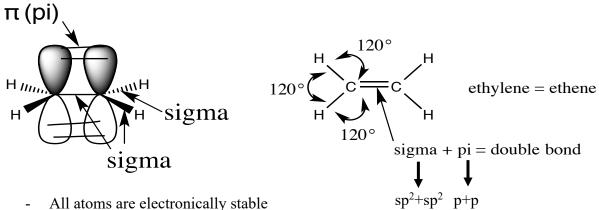
sp³ Hybridization


- Single bonds in 2nd row elements
- Tetrahedral geometry
- Angle between two H atoms in methane: 109°, close to that with other elements
- Often free rotation around single bonds
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)
- Each line in a structure represents 2 e⁻
- Solid wedge (): Toward you / out of the page
- Dashed wedge ("""): Away from you / into the page
- Plain solid line (_____): undefined geometry or in-plane



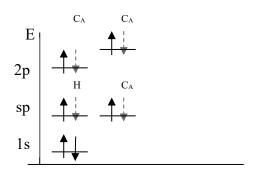

sp² Hybridization

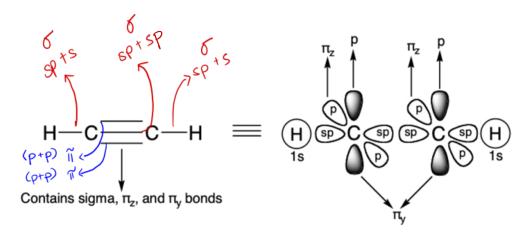
- Double bonds in the 2nd row
- Planar geometry
- Angle between two atoms: 120°
- No free rotation around double bonds because the p orbitals have to line up
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)
- Overlap of p atomic orbitals with p component gives pi molecular orbital (bond)

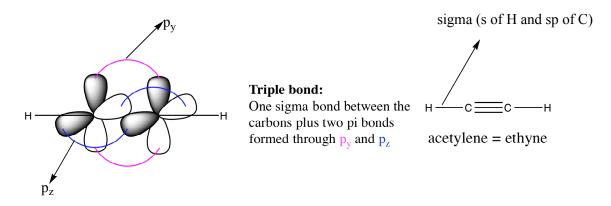


*only depicting valence shell electrons (1s typically not included)

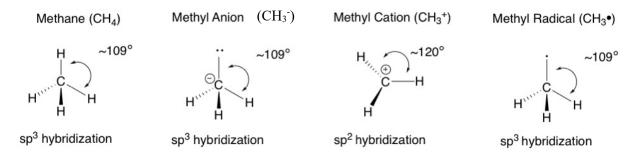
 $p + p \rightarrow \pi$ molecular orbital


 sp^2 carbon is in planar geometry; all atoms are in planar


- All atoms are electronically stable
- All atoms are isoelectronic with a noble gas
 - $H \rightarrow He ; C \rightarrow Ne$
- C-H bond \rightarrow sp² + s
- $C = C \rightarrow \text{ one is } sp^2 + sp^2 \text{ and one is } p + p$


sp Hybridization

- Triple bonds
- Linear geometry
- One sigma bond and two pi bonds
- No free rotation around triple bonds
- Angle between two atoms: 180°


e.g. Acetylene/Ethyne

Hybridization (sp³ vs sp²)

- Sp³ hybridized atoms have 4 "things" attached and has a tetrahedral geometry
- Sp² hybridized atoms have 3 "things" attached and has a planar geometry

Hybridization (sp³ vs sp²) cont.

Overlap of p orbitals to form pi (π) bonds precents free rotation around double bonds **e.g.** Aldehyde

$$\begin{array}{c|c}
 & (p^* P) \\
\hline
 & \pi + \sigma (sp^2 + sp^2) \\
\hline
 & 109^\circ O \\
\hline
 & 120^\circ \\
\hline
 & H \\
 & H \\
\hline
 & H \\
\hline
 & H \\
\hline
 & R = any group
\end{array}$$

The CH_2 is sp^3 hybridized, the atoms attached to it have a bond angle of 109° The carbonyl carbon is sp^2 hybridized, the atoms attached to it have a bond angle of 120° The oxygen contains two lone pairs (not drawn), it is sp^2 hybridized The single C-C bond can freely rotate.

Size and Shape of Molecules: determined by bond lengths and bonding type

- Geometry is dictated based on filled orbitals moving as far apart as possible
- A bond length between hydrogen and a 2nd row element is approximately 1A

NOTE THE FOLLOWING (Estimated bond length between atoms)

$$-$$
 C $-$ X $-$ C $=$ X $-$ X $-$ C $=$ X $-$ X $-$ C $=$ X $-$ X

Representation of Molecules

- Show only electrons in outer (valence) shell
- Non-bonding electrons (lone pairs) may or may not be shown
- Use element symbols, but carbon can be represented by point of angle or end of line
- Hydrogens and bonds to them from carbon are optional; show others.
- Each line in a structure represents 2 e⁻
- Solid wedge (): Toward you / out of the page
- Dashed wedge (''''''''): Away from you / into the page
- Solid line (————): undefined geometry or in-plane

Examples:

1. Propene (CH₃CHCH₂):

2. Tetrahydrofuran (THF)

Chemical Formula: C₄H₈O Molecular Weight: 72.11 Oxygen in the stable uncharged state forms two bonds with 2 lone pairs of electrons

Nitrogen in the stable uncharged state forms three bonds with 1 lone pair of electrons

Functional Group in Tetrahydrofuran is ETHER

ETHER