Definitions

- Chemistry: Study of matter
- Organic Chemistry: Study of compounds containing carbon. Chemical symbol of carbon is C
- Chemical symbol: Code for chemical element
- Atom: Is the smallest possible particle that defines a complete chemical element. Fundamental building blocks of chemistry.
 - \circ They are composed of neutrons, protons (+), and electrons (-)
- Every atom is composed of a nucleus and one or more electrons bound to the nucleus
- Molecules: Discrete (bonded) arrangement of atoms. Bonds can be covalent or ionic.
 - Changing the arrangement or connections changes the molecule and its physical properties
- Compound: Collection of molecules of the same type
 - Water (H₂O), Cholesterol (27 carbons, white crystalline powder, average male contains 80 g)
- Atomic Number: Number of protons in the nucleus of an atom (Z)
- Atomic Weight: Mass of protons (p⁺) and neutron (N) (unit: amu)
 - \circ ¹H = Hydrogen = 1p⁺ + 1e⁻
 - \circ ²H = Deuterium = 1p⁺ + 1N + 1e⁻
 - \circ ³H = Tritium = 1p⁺ + 2N + 1e⁻
 - \circ ¹²C = 6p⁺ + 6N (¹²C : 12 amu atomic weight, atomic No. 6)
 - \circ ¹³C = 6p⁺ + 7N (Isotope of Carbon, Stable, 1.1% abundance)
 - ${}^{14}C = 6p^+ + 8N$ (Radioactive isotope with long half-life, $T_{1/2} = 5740$ yrs) - $1N \rightarrow 1p^+ + 1e^-$ to become ${}^{14}Nitrogen$
- Molecular Weight (MW): Mass of atoms in a molecule
 - \circ H₂O: MW = [(2 x 1 g/mol)H + (1 x 16 g/mol)O] = 18 g/mol

Basic Principles

- 1. Like charges repel, unlike charges attract.
- Atoms want inert gas configuration of electrons
 Same configuration as Helium, Neon, Argon, Xenon, and Krypton.

Mole Concept

- 1 mole = 6.02×10^{23} (Avogadro's number) (can be atoms, molecules etc.)
- 1 mole H = 1 g
- Mole concept relates to MW and Atomic weight
- 18 g of H₂O is 6.02×10^{23} molecules = 1 mole of H₂O or 6.02×10^{23} molecules of water
- Carbon has 12 grams per mol, Oxygen has 16 g per mol, so for CO₂ we can calculate that it has 44 g/mol

- $D = {}^{2}H$, $1p^{+} + 1N = 2$ g/mol, it's an isotope
- $D_2O = 20g/mol$, known as heavy water.

Typical Molecule

- A few Angstroms (Å) in length: Bond length C-H is 1 Å, C-C is 1.5 Å
- \circ 1 Å = 10⁻⁸ cm
- \circ 1 Å = diameter of 1 hydrogen atom

Example: Cholesterol is 17 Å across. If you lined all of the cholesterol molecules in an 80 g bottle end to end it would wrap around the earth roughly 5,000,000 times.....

Physical Properties

- Defined by chemical structure
- Melting point (mp) and boiling point (bp): Each compound has a characteristic mp and bp.
- Taste, appearance, odour, and biological properties (how it interacts with other molecules).
- Light Absorption (hv)
- Density (symbol is ρ , rho) (unit = g/cm³)
- Density of water is 1g/cm³, compounds that are less dense than water will float on top if they are not miscible (infinitely soluble)
- Absorption of radiation (light)
- o Solubility

Purity of Compounds

- 1 mole of H₂O (6.02 x 10^{23} molecules) = 18 g, then add 1 x 10^{6} other molecules (e.g. sugar) → the purity of the water would be 99.999 999 999 999 999%.
- Purity: A pure compound shows no change in physical properties upon attempts to further purify (purity is a relative term).
- Purity: A pure compound has a discrete and unique physical properties.

Qualitative Test for Inorganic or Organic Compound

Qualitative: Determine if you have the compound of interest

Note that the structure of a molecule defines its physical properties

Organic	Inorganic
- Contains carbon	- No carbon
- Low mp $< 200 ^{\circ}$ C, low bp	- High mp & bp
- Burns frequently in air	(due to ionic
- Soluble in non-polar solvents	bonding)
	- "Does not burn"
	- Soluble in H ₂ O

Non-Polar solvent: Hexane, Benzene, Diethyl ether etc

THERE ARE MANY EXCEPTIONS!!!

E.g. Common table sugar is an organic molecule, however it dissolves in water

<u>Ouantitative Analysis</u>

Quantitative: How much of the compound of interest (quantity) Amounts of atoms in a compound