Supplementary Information

PLP-independent racemization: mechanistic and mutational studies of *O*-ureidoserine racemase (DcsC)

Yeong-Chan Ahn, Conrad Fischer, Marco J. van Belkum and John C. Vederas*

Department of Chemistry, University of Alberta, Edmonton, AB, Canada, T6G 2G2. E-mail: john.vederas@ualberta.ca; Fax: +1-7804922134; Tel.: +1-7804925475.

Content:

Fig. S1 ESI-MS data of DcsC (tagfree) with racemic inhibitor 2.	2
Fig. S2 ESI-MS data of SUMO-DcsC, M1-DcsC and M2-DcsC with racemic inhibitor 2.	2
Fig. S3 MS/MS data of M1-DcsC and M2-DcsC with racemic inhibitor 2.	3
Fig. S4 ¹ H-NMR assay of Deuterium exchange for substrate 1a with SUMO-DcsC.	3
Fig. S5 X-ray diagrams for inhibitor precursor diastereomers 7a and 7b.	4
Tab. S1 X-ray data summary for diastereomers 7a and 7b.	5
Fig. S6 ESI-MS data of M1-DcsC and M2-DcsC with chiral inhibitors 2a and 2b.	6
Fig. S7 MS/MS data of M1-DcsC and M2-DcsC with chiral inhibitors 2a and 2b.	7
Fig. S8 Sequence alignment between DcsC and DapF.	7
Fig. S9 ESI-MS data of M1-tDcsC and M2-tDcsC with chiral inhibitors 2a and 2b.	8
Fig. S10 MS/MS data of M1-tDcsC and M2-tDcsC with chiral inhibitors 2a and 2b.	9
Fig. S11 ¹ H-NMR activity assay for SUMO-DcsC and tDcsC with substrate 1a and 1b .	10-13
Fig. S12 Analytical data of 5a.	14-15
Fig. S13 Analytical data of 5b.	16-17
Fig. S14 Analytical data of 6a.	18-19
Fig. S15 Analytical data of 6b.	20-21
Fig. S16 Analytical data of 7a.	22-23
Fig. S17 Analytical data of 7b.	24-25
Fig. S18 Analytical data of 2a.	26-27
Fig. S19 Analytical data of 2b.	28-29

Figure S2. Electrospray mass spectra of inhibited SUMO-DcsC(A), M1-DcsC(B), M2-DcsC(C) with racemic inhibitor 2.

72 - 91 72 - 91	1011.4617 674.6565	2020.9088 2020.9477	2020.9133 2020.9133	-0.0045 0.0343	0	W.TADGSRSAQ <mark>S</mark> GNGARCVAAW.A W.TADGSRSAQ <mark>S</mark> GNGARCVAAW.A	Carbamidomethyl (C) <mark>Carbamidomethyl (C)</mark>
219 - 237 220 - 237	665.6338 828.3916	1993.8796 1654.7686	1993.7993 1654.6927	0.0803 0.0760	0	E.YGAGETLACGSGACAAAAV.L Y.GAGETLACGSGACAAAAV.L	Inhibitor (C) Inhibitor (C)
В							

72 - 91	738.6553	2212.9441	2212.9338	0.0103	0	W.TADGSRSAQCGNGARCVAAW.A	Inhibitor (C); Carbamidomethyl	(C)
220 - 238	817.3961	1632.7776	1632.7777	-0.0001	0	Y.GAGETLA <mark>S</mark> GSGACAAAAVL.M	Carbamidomethyl (C)	+

Figure S3. MS-MS sequencing data of M1-DcsC (A) and M2-DcsC mutants (B), inhibited by racemic inhibitor **2**, indicating the site of inhibition.

Figure S4. ¹H NMR assay of SUMO-DcsC, exemplarily shown for substrate **1a**. The decay of the α -CH peak at 4.05ppm is recorded over time.

Α

Figure S5. X-ray diffraction structure of chiral inhibitors. ORTEP diagram (30 % probability level) (A: 7a, B: 7b).

Table S1. X-ray data summary for structures 7a and 7b

	7a	7b
A. Crystal data		
Formula	C ₁₃ H	16N2O5
Formula weight (g/mol)	28	30.28
Crystal dimensions (mm)	0.25 ´ 0.13 ´ 0.03	0.25´0.25´0.05
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ (No. 4)	<i>P</i> 2 ₁ (No. 4)
Unit cell parameters	9857 reflections with 5.46°<2 θ <	3325 reflections with 5.48°<2q<
	147.08°	138.66°
<i>a</i> (Å)	5.92380 (10)	5.9509 (12)
<i>b</i> (Å)	7.17870 (10)	7.1789 (12)
<i>c</i> (Å)	16.1585 (3)	16.121 (4)
β (deg)	90.8223 (8)	90.821 (18)
V (Å ³)	687.07 (2)	688.6 (3)
Z (-3)	2	2
ρ_{calcd} (g cm ⁻)	1.355	1.352
$\mu (\mathrm{mm}^{-1})$	0.886	0.884
B. Data Collection and Refinement Conditio	ns	
Diffractometer	Bruker D8	
Radiation (λ [Å])	Cu Ka (1 54178)	(microfocus source)
Temperature (deg C)	-100	-100
Scan type	w and f scans (1	.0°) (5 s exposures)
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Data collection 2θ limit (deg)	147.90	135.31
Total data collected	4927 (-7 $\leq h \leq$ 7, -8 $\leq k \leq$ 8, -20 $\leq l \leq$ 20)	$3111 (-7 \le h \le 7, -8 \le k \le 8, -19 \le l \le 18)$
Independent reflections	2754 (R _{int} = 0.0174)	2076 (R _{int} = 0.0492)
Number of observed reflections (NO)	$2674 \ [F_0{}^2 \ge 2s(F_0{}^2)]$	$1582 \ [F_0{}^2 \ge 2s(F_0{}^2)]$
Structure solution method	intrinsic phasir	ng (SHELXT-2014 ²)
Refinement method	full-matrix least-squar	es on F ² (SHELXL–2014 ³)
Absorption correction method	Gaussian integra	ation (face-indexed)
Range of transmission factors	1.0000–0.7597	1.0000-0.5229
Data/restraints/parameters	2754 / 0 / 194	2076 / 0 / 182
Extinction coefficient $(x)^4$	0.0037(11)	
Flack absolute structure parameter ⁵	0.08(7)	0.1(5)
Goodness-of-fit (<i>S</i>) ^{<i>g</i>} [all data]	1.025	1.097
Final <i>R</i> indices ⁶		
	0 0268	0.0830
$\kappa_1 \left[F_0^2 \ge 2s(F_0^2) \right]$	0.0200	0.2556
	0.0729	• • • • • • • • • • •
Largest difference peak and hole	0.171 and –0.137 e Å ⁻⁵	0 369 and –0 422 e Å ⁻³

Figure S6. Electrospray mass spectra of inhibited M1-DcsC mutants (A1: 2a, A2: 2b) and M2-DcsC mutants (B1: 2a, B2: 2b). The nominal mass of the inhibitor is 176 Da.

A1 72 - 91 81 - 91 226 - 238	674.6555 2020.9447 2020.9133 574.7810 1147.5474 1147.5193 1178.5057 1177.4984 1177.5220	0.0313 0 W.TADGSRSAQSGNGARCVAAW.A Carbamidomethyl (C) 0.0282 0 Q.SGNGARCVAAW.A Carbamidomethyl (C) -0.0235 0 L.ACGSGACAAAAVL.M 2 Carbamidomethyl (C)
A2		
72 - 91 215 - 238	674.6558 2020.9456 2020.9133 837.3826 2509.1260 2509.1326 -0.0066	0.0322 0 W.TADGSRSAQSGNGARCVAAW.A Carbamidomethyl (C) 0 L.RVHEYGAGETLACGSGACAAAAVL.M Carbamidomethyl (C); Inhibitor (C)
B1		
73 - 92 81 - 98 220 - 238 220 - 239	709.6366 2125.8880 2125.9018 -0.0138 660.2981 1977.8725 1977.9261 -0.053 817.4003 1632.7860 1632.7777 0.000 882.9251 1763.8356 1763.8182 0.013	 0 T.ADGSRSAQCGNGARCVAAWA.V Inhibitor (C) 7 0 Q.CGNGARCVAAWAVRAGIA.R Carbamidomethyl (C); Inhibitor (C) 83 0 Y.GAGETLASGSGACAAAAVLM. Carbamidomethyl (C) 74 0 Y.GAGETLASGSGACAAAVLM.R Carbamidomethyl (C)

B2

72 - 91	698.9785	2093.9137	2093.9120	0.0017	0	W. TADGSRSAQCGNGARCVAAW.A	2 Carbamidomethy	l (C)
220 - 238	817.3966	1632.7786	1632.7777	0.0009	0	Y.GAGETLASGSGACAAAAVL.M	Carbamidomethyl	(C)
220 - 238	817.4011	1632.7876	1632.7777	0.0099	0	Y.GAGETLASGSGACAAAAVL.M	Carbamidomethyl	(C)

Figure S7. MS-MS sequencing data of mutant DcsC. A1: M1-DcsC with 2a, A2: M1-DcsC with 2b, B1: M2-DcsC with 2a, B2: M2-DcsC with 2b.

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
DcsC DapF Consensus	MIRMRT	IPSTLPFT HMIFA h\$iFa	KMHG <mark>AGNDF</mark> YY KGHGTQNDFYL KgHGaqNDFY1	L-DLRDGPD LPDYDAELY L.Dlraeld	PSPELCRALAD LTAARYAALCD 1saarcaALaD	RHKGYGCDL RRKGLGADG RrKG1GaDg	.VLGIREPRSA VLRVTTAGAA VLr!rearaA	RAVAAFDI QAVGYLDSLPE rAVaalDi	GYRYTD <mark>hy</mark> md Gyrytd <mark>h</mark> ymd	-TADGSRS (RNADGSAA , nADGSaa	AQCGNGARCYI QHCGNGYRYFI aqCGNGaRcfi	AAHAYRAGLA AHYLRASGLE AawaraaGLa	RGPRFALDSP VRDEFVVGSL rrdrFaldS1	SGTHEYD AGPRPYT aGpreYd
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
DcsC DapF Consensus	YLDAD1 CHHYEF chda#a	TFRYALAYI AAYADYSYI aaraalaYo	PRFAPESIPLF	GHDGEQDLY GKANRLGAG Ghanrqdag	EADLGDGTRYR EAYYG-GRRFH EAdlG.GrRfr	FRAYSHGNP GLAYDYGNP gaAYdnGNP	YH-AVIEVDDT Yhlacydsqlt Yh.ac!#s#dt	ATAPYAR-YGR YDGLAALDYGA adalaAr.YGa	AYQASGLFLP PYSFDGAQFP aYqadGaq1P	GYNYGFAR GYNYEYLT 1.YNYefar	YESRDRYHLR APYDGAYHHR aesrdaYh\$R	VHEYGAGETL VHERGYGETR VHErGaGETr	ACGSGACAAA SCGTGTVAAA aCGsGacAAA	-AYLMRR VAALAAY ,AaLaar
	261	270	280	290	300	310								
DcsC DapF Consensus	GRYDRN GSPTG1 Grpdrr	NYSYYLPGO FLTYHYPGO n1sYh1PGO	GELRISHPDDA GEVVVTVTD GElr!swpD	ADVLMTGPA ATSFLRGPS Ads1\$rGPa	AFYYEGTFLHA YLYARGDLADD alYarGdlada	SY Hunamg Sw								

Figure S8. Sequence similarity between DcsC and DapF. Red letters indicate high similarity, blue letters depict mediocre alterations.

Figure S9. Electrospray mass spectra of inhibited M1-tDcsC mutants (A1:2a, A2: 2b) and M2-tDcsC mutants (B1: 2a, B2: 2b).

70 - 79 545.7897 1089.5648 1089.4985 0.0663 0 S.AQSGNGARCVA.A Carbamidomethyl (C) 0 R.VHEYGAGETLACGSGACAAAAVLMR.R 2 Carbamidomethyl (C) 207 - 241 1261.5435 2521.0724 2521.1512 -0.0787 A2 72 - 82 574.7784 1147.5422 1147.5193 0.0230 0 Q.SGNGARCVAAW.A Carbamidomethyl (C) 211 - 229 913.4064 1824.7982 1824.7982 0.0000 0 Y.GAGETLACGSGACAAAAVL.M Carbamidomethyl (C); Inhibitor (C) B1
 709.6366
 2125.8880
 2125.9018
 -0.0138
 0
 T.ADGSRSAQCGNGARCVAAWA.V
 Inhibitor (C)

 817.4003
 1632.7860
 1632.7777
 0.0083
 0
 Y.GAGETLASGSGACAAAAVL.M
 Carbamidomethyl (C)
 64 - 83 211 - 229 B2 611.2768 1220.5390 1220.5179 0.0211 0 Q.CGNGARCVAAW.A 2 Carbamidomethyl (C) 72 - 82 817.4121 1632.8096 1632.7777 0.0319 0 Y.GAGETLASGSGACAAAAVL.M Carbamidomethyl (C) 211 - 229

Figure S10. MS-MS sequencing data of mutant tDcsC. A1: M1-tDcsC with 2a, A2: M1-tDcsC with 2b, B1: M2-tDcsC with 2a, B2: M2-tDcsC with 2b.

A1

Figure S11. Enzyme activities by ¹H-NMR. A. SUMO-DcsC with **1a**. B. SUMO-DcsC with **1b**. C. truncated DcsC with **1a**. D. truncated DcsC with **1b**.

Figure S12. Analytical data of 5a. A. 1H-NMR. B. 13C-NMR. C. ESI. D. FTIR

Wavenumbers (cm-1)

Figure S13. Analytical data of 5b. A. 1H-NMR. B. 13C-NMR. C. ESI. D. FTIR

С.

User Spectra

Formula Cal	culator Results									
Formula	Ion Species	Mass	Calc. Mass	m/z	Calc. m/z	Diff (mDa)	Diff(ppm)	DBE	Ion	Score
C16 H22 O4	C16 H26 N O4	278.1522	278.1518	296.186	296.1856	-0.34	-1.23	6	(M+NH4)+	83.28
C16 H22 O4	C16 H22 Na O4	278.1518	278.1518	301.141	301.141	0.06	0.21	6	(M+Na)+	78.59
0101122 01	010112211001	270.1310	270.1310	301.141	301.141	0.06	0.21	6	(M+Na)+	/8.

Figure S14. Analytical data of 6a. A. 1H-NMR. B. 13C-NMR. C. ESI. D. FTIR

C. User Spectra

Formula Calc	culator Results									
Formula	Ion Species	Mass	Calc. Mass	m/z	Calc. m/z	Diff (mDa)	Diff(ppm)	DBE	Ion	Score
C16 H22 O4	C16 H26 N O4	278.1526	278.1518	296.1864	296.1856	-0.79	-2.82	6	(M+NH4)+	88.89
C16 H22 O4	C16 H22 Na O4	278.1517	278.1518	301.1409	301.141	0.12	0.44	6	(M+Na)+	92.13

Figure S15. Analytical data of 6b. A. 1H-NMR. B. 13C-NMR. C. ESI. D. FTIR

C.

Figure S16. Analytical data of 7a. A. 1H-NMR. B. 13C-NMR. C. ESI. D. FTIR

С.

35

30

25

20

Ó

7b

2500

Wavenumbers (cm-1)

1683.56

1718.94

1500

2000

760.31

774.37

1046.20 1177.50

1000

Figure S17. Analytical data of 7b. A. 1H-NMR. B. 13C-NMR. C. ESI. D. FTIR

3000

University of Alberta - Chemistry Department *AHN S-INH CAST FILM H20 Fri Sep 29 15:01:18 2017 (GMT-06:00)

3500

c:\my documents\omnic\autosave\MICR2122.spa

ö

С.

Formula Calcula	tor Results				
Formula .	Ion Species	Mass	Calc. Mass	m/z	Calc. m/z
C5 H8 N2 O5	C5 H7 N2 O5	176.0429	176.0433	175.0358	175.036

D.

Figure S18. Analytical data of 2a. A. 1H-NMR. B. 13C-NMR. C. ESI. D. FTIR

C.

Formula .	Ion Species	Mass	Calc. Mass	m/z	Calc. m/z
C5 H8 N2 O5	C5 H7 N2 O5	176.0429	176.0433	175.0357	175.036
00 110 112 00	00 11/ 112 00	170.0125	170.0155	1/5.055/	175.050

Figure S19. Analytical data of 2b. A. 1H-NMR. B. 13C-NMR. C. ESI. D. FTIR

Literature and Footnotes:

¹ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

- ² Sheldrick, G. M. Acta Crystallogr. **2015**, A71, 3–8. (SHELXT-2014)
- ³ Sheldrick, G. M. Acta Crystallogr. **2015**, C71, 3–8. (SHELXL-2014)

 ${}^{4}F_{C}^{*} = kF_{C}[1 + x\{0.001F_{C}^{2}/3/\sin(2q)\}]^{-1/4}$ where k is the overall scale factor.

⁷ Flack, H. D. *Acta Crystallogr.* **1983**, *A39*, 876–881; Flack, H. D.; Bernardinelli, G. *Acta Crystallogr.* **1999**, *A55*, 908–915; Flack, H. D.; Bernardinelli, G. *J. Appl. Cryst.* **2000**, *33*, 1143–1148. The Flack parameter will refine to a value near zero if the structure is in the correct configuration and will refine to a value near one for the inverted configuration. The low anomalous scattering power of the atoms in this structure (none heavier than oxygen) implies that the data cannot be used for absolute structure assignment, thus the Flack parameter is provided for informational purposes only. The stereochemistry was assigned on the basis of the established stereochemistry of the precursor compound.

 ${}^{6}S = [Sw(F_0{}^2 - F_c{}^2)^2/(n - p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [s^2(F_0{}^2) + (0.0429P)^2 + 0.0614P]^{-1} \text{ where } P = [Max(F_0{}^2, 0) + 2F_c{}^2]/3).$

 ${}^{7}R_{1} = S||F_{0}| - |F_{c}||/S|F_{0}|; wR_{2} = [Sw(F_{0}^{2} - F_{c}^{2})^{2}/Sw(F_{0}^{4})]^{1/2}.$