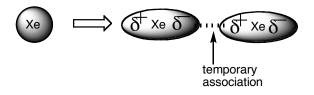
RECALL:

There are three attractive intermolecular forces

- i) Hydrogen bonding
 - Donors: H on O, N, or Halogen
 - Acceptors: Lone pair on O, N, or halogen
- ii) Dipole-dipole interaction

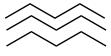

 δ^+ δ^-

iii) London forces (temporary dipole; hydrophobic bonding)

London Forces:

- Also know as dispersion forces
- Weakest attractive force
- Distortion of filled outer shell electrons
- Principal effect in hydrophobic interactions

Atoms	Boiling Point	
Не	-269 °C	Small atom/ Low polarizability
Ne	-246 °C	1
Ar	-186 °C	
Kr	-153 °C	\downarrow
Xe	-108 °C	Large atom/ High polarizability

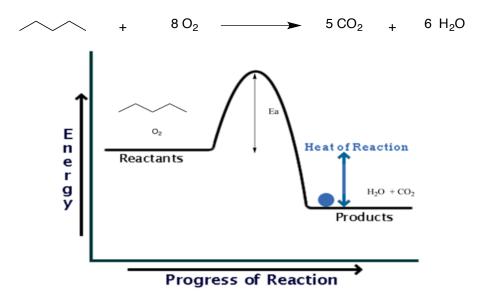

• The larger the atom (expanded electron density), the easier the formation of temporary dipoles

This is the reason why CH₄ associates with CH₄, due to London forces

C₅H₁₂ hydrophobic bonding:

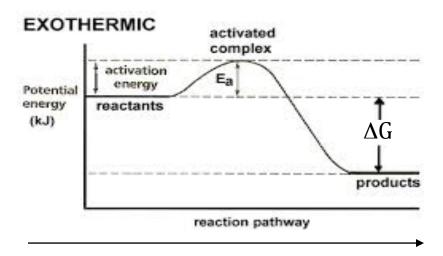
 $H_3C-CH_2-CH_2\cdot CH_2-CH_3$

n-pentane n= Normal=straight



n-Pentane has a boiling point of 35 $^{\circ}$ C; therefore, it is a liquid at room temperature - why is it a liquid? Because its temporary dipoles – it is not miscible in water – water would rather hydrogen bond to itself – like dissolves like.

Reactivity/ Reactions


Exothermic Reaction: Negative ΔG

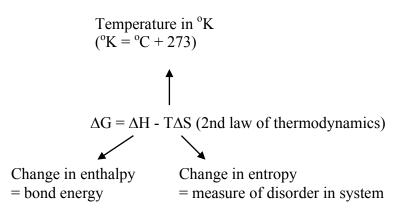
Example: Combustion of Pentane

Progress of reaction is also called Reaction Coordinate S.M. = starting material or reactants (e.g. pentane, oxygen)

Energy diagram for the reaction:

NB: $\Delta E = \Delta G$: Gibbs free energy (total) change for the reaction

Reaction coordinate => progress of reaction

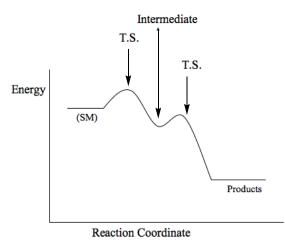

- The above reaction is an exothermic reaction, heat is released during reaction

- ΔG will be negative ($\Delta G < 0$) for an exothermic (heat releasing) reaction, but will be positive ($\Delta G > 0$) for endothermic reaction.

- E_A = Activation energy: minimum amount of energy required to activate molecules or atoms to be able to undergo a chemical reaction.

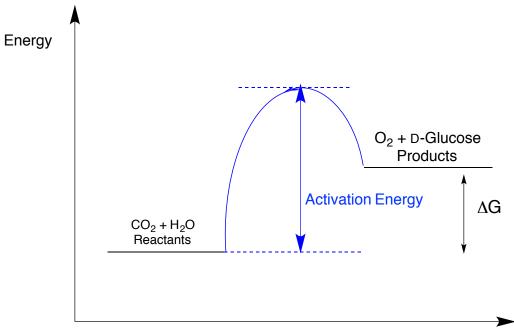
- Activated complex or transition state (T.S): Highest energy point in a reaction pathway in which bonds are being formed and broken simultaneously. A T.S. cannot be observed or isolated. Should not be confused with and an intermediate.

Thermodynamic of a chemical reaction:



 $\Delta G = -RT \ln K_{eq}$ $R = Gas \ constant = 0.082 \ \underline{L \cdot atm}_{mol \cdot K}$ $T = Temperature \ in \ ^{o}K$ $\Delta G = Change \ in \ energy \ of \ system \ (determines \ equilibrium)$ $E_a = Activation \ energy \ \rightarrow \ determines \ rate \ of \ reaction$

 K_{eq} = equilibrium constant = [C][D] [C] = concentration of compound C [A][B]


 ΔG determines product concentrations at equilibrium Ea determines rate of reaction

Reaction proceeding through an intermediate

NB: The Rate Determining Step is the TS with the larger E_A , which will be the slowest step; that is for the diagram to the left, the first step is the rate determining step.

Endothermic Reaction: Positive ΔG

Progress of reaction

Summary:

 $\Delta E = \Delta G$: Gibbs free energy (total) change for the reaction

Change in Entropy

$$\downarrow$$

 $\Delta G = \Delta H - T\Delta S$ (2nd law of thermodynamics)
 \downarrow
Change in enthalpy
= bond energy

Exothermic reactions have $\Delta G =$ Negative

Endothermic reactions have $\Delta G = Positive$

TS = Transition State: Point where bonds are partially broken and partially formed

Intermediate: Short lived species

Bond Energy

Example:

Radicals

 $H-CH_3 \longrightarrow H \bullet + \bullet CH_3$

Bond	Bond Energy (kcal/mol)
H-C	99
H-O	111
C-C	83
C=O	179
O=O	119

e.g.) $CH_4 + 2 O_2 \xrightarrow{\Delta} CO_2 + 2 H_2O - Exothermic reaction (releases Energy (E))$

 $\Delta E_{\text{reaction}} = \Delta E_{\text{SM}} - \Delta E_{\text{pdt}}$

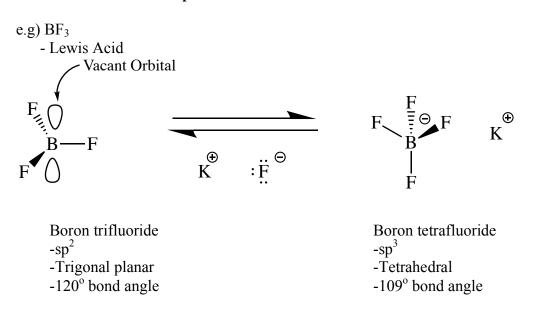
For CH ₄ :	$4 \times C-H \text{ bonds} = 4 \times 99$		= 396 kcal/mol	ΔE_{SM} = sum of bonds
	2 x O=O	= 2 x 119	= 238 kcal/mol	broken (enthalpy)
	ΔE_{SM}		= 634 kcal/mol	

For products:	2 C = O = 2	2 x 179 = 358 kcal/mol	ΔE_{pdt} = sum of bonds formed
	4 H-O =	$4 \ge 111 = 444 \text{ kcal/mol}$	
	ΔE_{pdt}	= 802 kcal/mol	

 $\Delta E_{\text{reaction}} = 634 \text{ kcal/mol} - 802 \text{ kcal/mol} = -168 \text{ kcal/mol}$ (exothermic reaction, energy released)

Acids and Bases

Bronsted – Lowry :


- An acid donates proton (H⁺)
- A base accepts a proton (H⁺)

HCI \longrightarrow H⁺ + CI⁻ NaOH \longrightarrow Na⁺ + OH⁻

- HCI + NaOH → NaCI + H-OH
- Very fast reaction as HCl is a strong acid and NaOH is a strong base. NaCl is a weak base (weak conjugate base) and H₂O is a weak acid (weak conjugate acid).

Lewis Acid/Base:

- An acid accepts a pair of electrons
- A base donates a pair of electrons

BF₃ can react with potassium fluoride (KF) to obtain an inert gas configuration. However, BF_4^- is unhappy with a formal negative charge, so the reaction is reversible.

• Every Bronsted-Lowry acid/base is also a Lewis acid/ base. The converse statement is not true; not all Lewis acids/bases can be classified as a Bronsted-Lowry acids/bases.

$$H \xrightarrow{\frown} A$$
 $H^{\oplus} + \stackrel{\bigcirc}{:} A$ $K_{eq} = K_a = [H^+][A^-]$ $K_a = acidity constant$
[HA] $pK_a = -logK_a$

Ex #1) Water:

H-O-H
$$\longrightarrow$$
 H + $\stackrel{\bigcirc}{::}$ H $K_a = [H^+][\stackrel{\frown}{:} OH] = 10^{-15.7}$
 $pK_a = -logK_a = 15.7$
 $Na^+ + OH + CH_4 \longrightarrow$ H-O-H + $:$ $\stackrel{\frown}{:} CH_3$
Weak Weak Acid Strong Base

The equilibrium above lies far (exclusively) to the left. Hydroxide will NOT deprotonate methane.

Ex # 2) Ammonia Gas:

Ammonia gas is a better acid compared to methane (bigger K_A), because nitrogen is more electronegative than carbon. It can hold a negative charge easier than carbon.

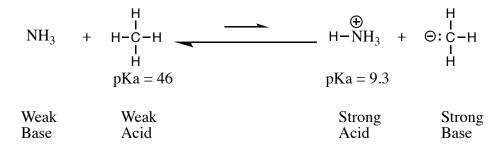
NB: The lower the pKa the more acidic

pKa of "Ammonia" in biological system

$$H = N = H \qquad H = H \qquad$$

Ex #3) Methane:

H-CH₃
$$\longrightarrow$$
 H⁺ + CH₃⁻
 $K_a = [\underline{H}^+][\underline{CH}_3^-] = 10^{-46}$ $[\underline{HCH}_3]$


$$pK_a = -logK_a = 46$$

NB: Oxygen is more electronegative than nitrogen, which makes water more acidic than ammonia. Nitrogen more electronegative than carbon and that makes ammonia more acidic than methane.

			+ Na
Na ⁺ + OH	+ CH ₄	<u> </u> Н-О-н	+ :CH ₃
Weak Base	Weak Acid	Strong Acid	Strong Base

The equilibrium above lies far (exclusively) to the left. Hydroxide will NOT deprotonate methane.

Ex #4) Strong acid/base

The reaction lies far (exclusively) to the left since ammonia is not a strong enough base to deprotonate methane