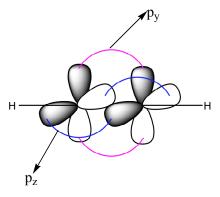

Chem 261 Sep 11, 2018

Hybridization (sp³ vs sp²)

Hybridization (sp³ vs sp²) cont.

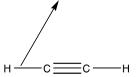
no free rotation around double bonds (overlap of p orbitals to form pi (π) bond prevents that)


e.g.

1. Aldehyde

The CH₂ is sp³ hybridized, the atoms attached to it have a bond angle of 109° The carbonyl carbon is sp² hybridized, the atoms attached to it have a bond angle of 120° The oxygen contains two lone pairs (not drawn), it is sp² hybridized

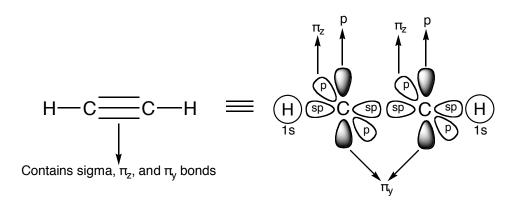
Hybridization: sp


- Triple bonds
- Linear geometry
- No free rotation around triple bonds

Triple bond:

One sigma bond between the carbons plus two pi bonds formed through p_v and p_z as

sigma (s of H and sp of C)


acetylene = ethyne

sp Hybridization

- Triple bonds
- Linear geometry
- No free rotation around triple bonds
- Angle between two atoms: 180°

$$\begin{array}{c|cccc}
E & C_A & C_A \\
2p & & & & \\
H & C_A & \\
sp & & & & \\
1s & & & & \\
\end{array}$$

e.g. Acetylene/Ethyne

Size and Shape of Molecules: determined by bond lengths and bonding type

NOTE THE FOLLOWING (Estimated bond length between atoms)

X = C, O, N, F

Representation of Molecules

- Show only electrons in outer (valence) shell
- Non-bonding electrons (lone pairs) may or may not be shown
- Use element symbols, but carbon can be represented by point of angle or end of line
- Hydrogens and bonds to them from carbon are optional; show others.
- Each line in a structure represents 2 e
- Solid wedge (): Toward you / out of the page

Examples:

1. Tetrahydrofuran (THF)

$$= H C C H = O$$
3D representation
$$H C C C H = O$$

Chemical Formula: C₄H₈O Molecular Weight: 72,11

NB: Oxygen in the stable uncharged state forms two bonds with 2 lone pairs of electrons

NB: Nitrogen in the stable uncharged state forms three bonds with 1 lone pair of electrons

NB: Functional Group in Tetrahydrofuran is ETHER

ETHER

2. Conine (Poison Hemlock)

Chemical Formula: C₈H₁₇N Molecular Weight: 127.23

3. Testosterone (a steroid) - C_{19}

$$C = C$$
Alkene

 $C = C$
 $C =$

Functional groups in testosterone (alkene and ketone and alcohol)

4. Estradiol - C₁₈

Female hormone All purple atoms are in the same plane

Formal Charge

- Convention to keep track of charges
- \sum (sum of) of formal charges on all atoms in a molecule = overall charge on molecule

Rules for calculating formal charge

- Add number of protons in nucleus
- Subtract number of inner shell electrons
- Subtract number of unshared electrons
- Subtract ½ of the number of shared outer shell electrons

1. Sodium Nitrite -NaNO₂

Formal Charge on Nitrogen

+7 (number of protons)
-2 (1s electrons)
-2 (unshared electrons)

$$\frac{1}{2} \times 6 = \frac{-3}{0}$$
 (1/2 of shared electrons)

Single bonded oxygen (O)

+8 (number of protons) -2 (1s electrons) -6 (unshared electrons) $\frac{1}{2} \times 2 = -1$ (1/2 of shared electrons)

2. Methyl Radical

H
H-C
H
Gramal Charge on Carbon
H
H
(number of protons)
-2 (1s electrons)
-1 (unshared electrons)
$$\frac{1}{2} \times 6 = -3 \text{ (1/2 of shared electrons)}$$

Sodium Nitrate - NaNO₃ 3.

Formal Charge on Nitrogen:

+7 (number of protons)

-2 (1s electrons)

0 (unshared electrons)

$$\frac{1}{2} \times 8 = -4$$
 (1/2 of shared electrons)

Double bonded oxygen:

+8 (number of protons)

-2 (1s electrons)

-4 (unshared electrons)

 $\frac{1}{2} \times 4 = \frac{-2}{0}$ (1/2 of shared electrons)

Single bonded oxygen (both):

+8 (number of protons)

-2 (1s electrons)

-6 (unshared electrons)

 $\frac{1}{2}$ x 2 = -1 (1/2 of shared electrons)

Overall charge on the nitrate anion is = +1 + 0 - 1 - 1 = -1