CHEM 261 October 23, 2018


REVIEW:

Alkene Nomenclature:

Below are two structural isomers of 1-butene

$$H_3C$$
 $C=C$
 H_3C
 CH_3
 C

Example 1: 6-Bromo-2-hexene

trans-6-Bromo-2-hexene cis-6-Bromo-2-hexene

In the cis isomer, the two higher priority groups on either side of the carbon-carbon double bond are pointing in the same direction.

Example 2: 1-Bromo-1-fluoro-1-propene

$$Br$$
 H_3C Br E

1-bromo-1-fluoropropene

1-bromo-1-fluoropropene

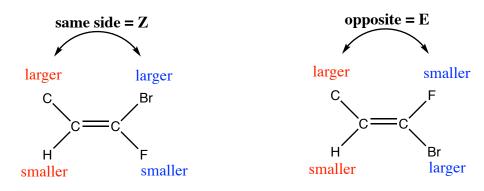
Question: Are the compounds above the same?

Answer: No, they are diastereomers and we can differentiate them by using the E and Z nomenclature

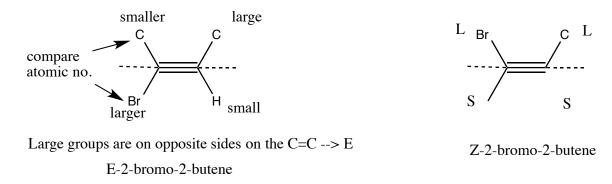
E, Z - Nomenclature

E - Entegegen - Opposite

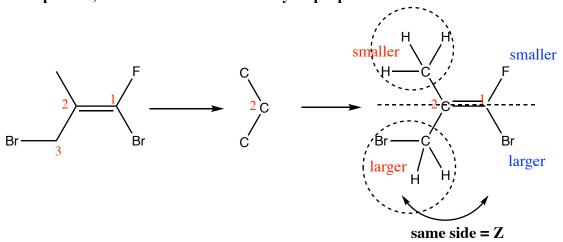
Z - Zusammen - Together


Naming based on atomic number, similar process to identifying S/R stereochemistry

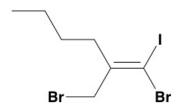
Example 1: 1-bromo-1-fluoro-1-propene


- compare the atomic no. of the adjacent atoms.

Compare the **left** side of the C=C bond

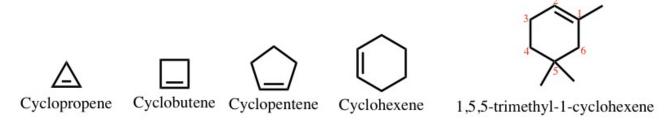

Compare the right side of the C=C bond

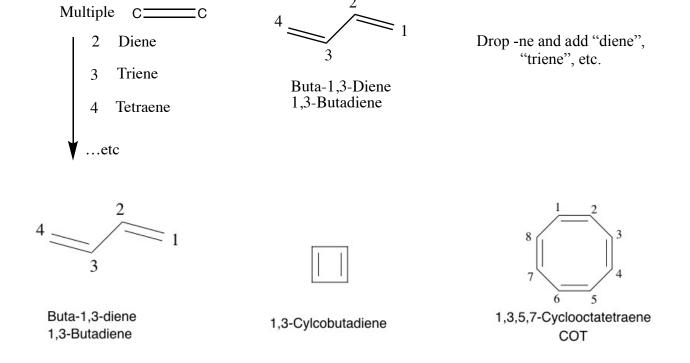
Example 2: 2-bromo-2-butene


Example 3: 1,3-dibromo-1-fluoro-2-methyl-1-propene

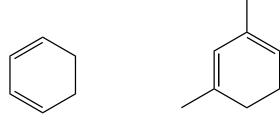
Therefore the name is: (Z)-1,3-dibromo-1-fluoro-2-methyl-1-propene

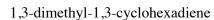
If you cannot decide on basis of atomic number of atoms directly attached to double bond, go to the next set of atoms until a higher atomic number is found


Example 3:

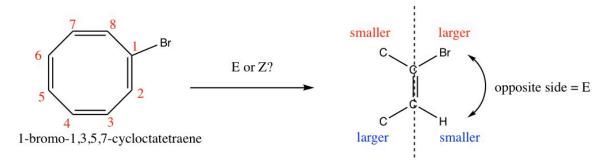

E-1-Bromo- 2-bromomethyl-1-iodohex-1-ene

Iodine is on the opposite side to the bromomethyl (highest priority groups on either side of the alkene) and so the stereochemistry is deemed E.

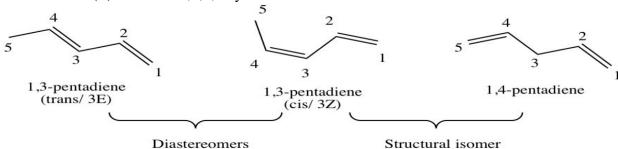

Nomenclature of Cycloalkenes

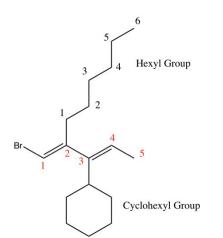

Nomenclature of alkenes with multiple carbon-carbon double bonds (poly-enes):

Other examples:

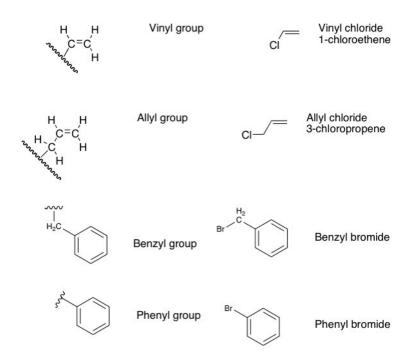


1,3-cyclohexadiene




benzene (NOT a cyclohexatriene) (aromatic)

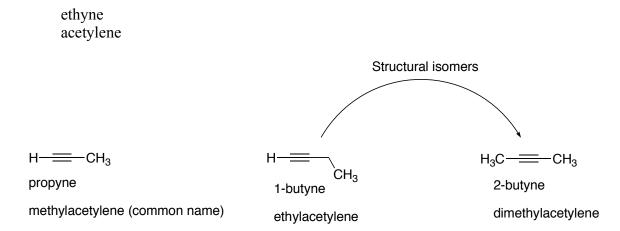
It is therefore (E)-1-bromo-1,3,5,7-cycloctatetraene



- 1,3-pentadiene (trans) = (E)-1,3-pentadiene
- 1,3-pentadiene (cis) = (Z)-1,3-pentadiene

Note: Carbons attached to double and triple bonds are depicted as additional carbon-carbon bonds in the representations above.

Special Nomenclature of Common Groups:



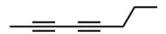
phenyl bromide is caommonly called bromobenzene

Nomenclature of Alkynes

Rules:

- Find longest chain with max number of multiple bonds
- Number from end to give 1st <u>multiply</u> bonded position the lowest number
- Drop "ane" and add "yne"
- For multiple triple bonds, drop "ne" and add "diyne"," triyne", etc.

Multiple alkynes end with:


 $2 \quad C = C \quad diyne$

3 C \blacksquare C triyne

4 C≡C tetrayne

Mixed double and triple bond containing compounds are "eneynes"

Example 1:

2,4 - Octadiyne

Example 2:

The below example is from canola – defense substance (anti-nematode)

Parent alkane of 13 carbons is tridecane – hence trideca

3*E*,11*E*-trideca-1,3,11-triene-5,7,9-triyne