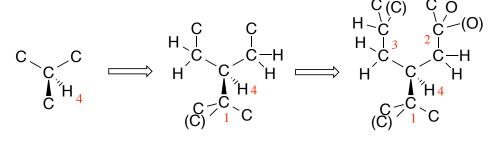
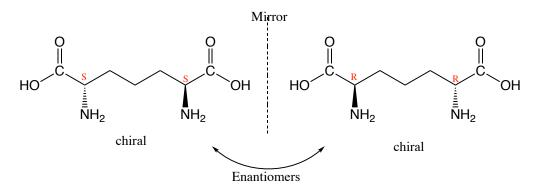

C

Demo: Odor of Carvone (two enantiomers with different odor)

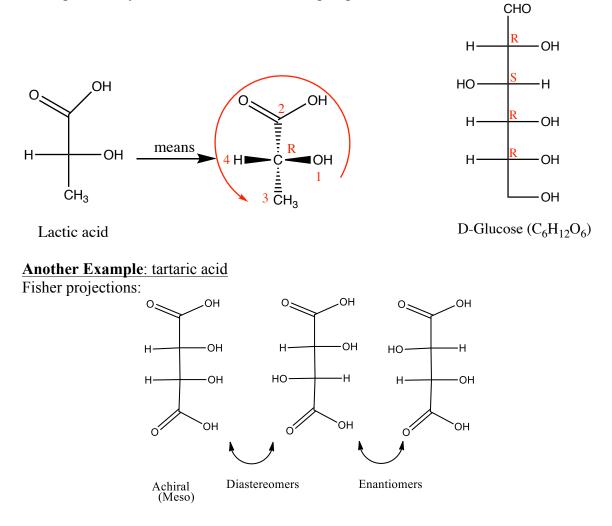

Ο


S-carvone (caraway-like)

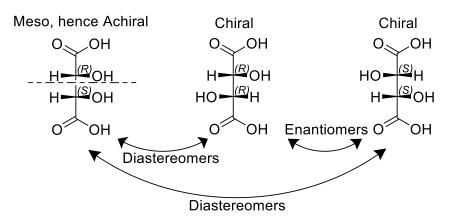
Absolute configuration of D-carvone is S:


Another example: Diaminopimelic acid

- Achiral molecule even though there is symmetry, it contains stereogenic center (s) and this kind of molecules are called <u>Meso compounds</u>


- Diaminopimelic acid - a component of bacterial cell wall

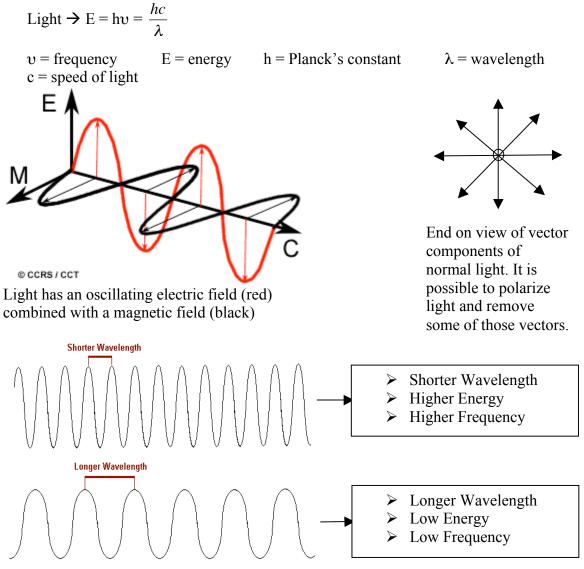
- this R,S diaminopimelic acid (above) is a diastereomer of the enantiomers (S,S or R,R diaminopimelic acid) below:

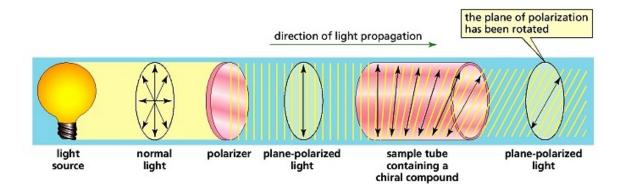


Fischer Projections

A method of drawing chemical structures, where the horizontal components are coming towards you and the vertical ones are going back

Relationship between stereoisomers of tartaric acid

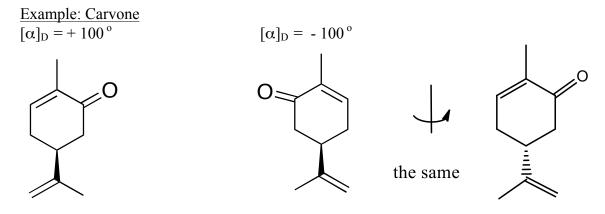

Physical Properties of Enantiomers


- Same physical properties with achiral agents or procedures
 - Melting point, boiling point, solubility in achiral solvents
- Enantiomers behave differently with chiral agents
- Diastereomers have different physical properties (m.p, b.p, density, solubility)

Optical Activity

- Absolute rotation is 0 ° for achiral molecules
 - Rotation of polarized light
 - Dextrorotatory (right) (+) (clockwise)
 - Levorotatory (left) (-) (counter-clockwise)
- Pure enantiomers show equal but opposite rotation

Light: Electromagnetic radiation



Optical Rotation

 $[\alpha]_D$ = Absolute rotation at the D line of sodium (589 nm or 5890 Å)

$$\left[\alpha\right]_{D} = \frac{\alpha}{c \bullet l}$$

 $\begin{array}{ll} \alpha = \text{measured rotation} (^{\circ}) & \text{c} = \text{concentration} (\text{g/cm}^3) & \text{l} = \text{path length} (\text{dm}) \\ \text{D} = \text{D-line of sodium light} & [\alpha] = \text{absolute rotation} \\ \text{Degrees} (^{\circ}) = +: \text{Clockwise} \\ & \text{-}: \text{Anticlockwise} \end{array}$

enantiomers

D-carvone (caraway) D = dextrorotatory (clockwise) L-carvone (spearmint) L = levorotatory (counter clockwise)

- R/S indicate nomenclature (naming convention) and

- D/L indicate optical activity (physical property)

They cannot be easily correlated theoretically (there is no reliable method to predict that a D or L compound would have certain R or/and S stereogenic center designation).

<u>Optical purity</u> (experimental) = enantiomeric excess = e.e. (theoretical)

Optical purity is the excess of one enantiomer over the other

 $[\alpha]_D$ = Absolute rotation of a compound

Calculating Optical Purity

For this example for D and S-carvone, assume the pure S enantiomer has +100° rotation

R	S	Rotation (°)	Optical Purity (%)
100 %	0 %	-100 °	100 %
75 %	25 %	-50 °	50 %
50 %	50 %	0 °	0 %
25 %	75 %	+50 °	50 %
0 %	100 %	+ 100 °	100 %

If a solution is an equivalent mix of 1:1 R + S enantiomers, α measured = 0^o

A 50:50 mixture of enantiomers is called a *racemic mixture* (or racemate)