
CHEM 261 Mar 9, 2017

Review: Hydrogenation

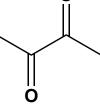
The addition of H₂ to an alkene

Example: cyclohexene

Aside: $D = deuterium = {}^{2}H (1 p^{+} and 1 e^{-})$ Product is a **meso** compound (has stereogenic centers but is achiral due to plane of symmetry within molecule

Example: androstane (steroid, male hormone)

 H_2 comes from the bottom only because the methyl group adjacent to the alkene shields the top face


methyl group sterically hinders the approach

Example: fats (esters of glycerol)

glycerol or glycerin:

triglyceride: ester molecule composed of glycerol and three fatty acids

Aside: the colour of margarine is artificial, a yellow dye – Pearl (maragon) is added, hence the name 'margarine' Additionally, diacetyl (on the right) is added and this gives it the familiar "buttery flavour"

Terminology

Unsaturated fat = double bond in the fatty acid, induces "kinks" in the carbon chain *Saturated fat* = single bonds in the carbon chain (not including glycerol moiety)

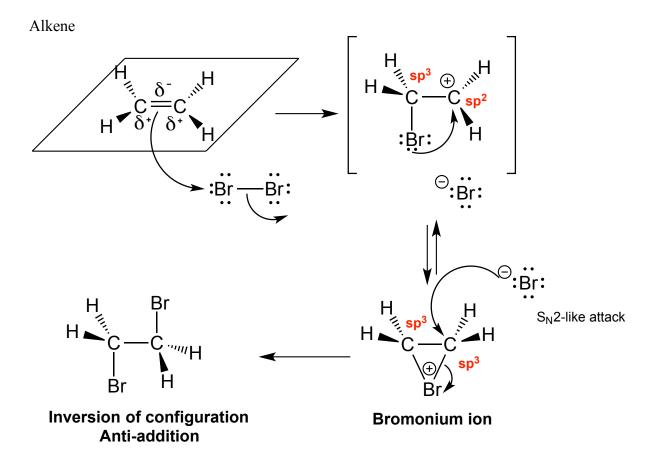
Trans-unsaturated fat:

Trans-polyunsaturated fat = multiple double bonds, all with *trans* configuration *Cis-polyunsaturated fat* = multiple double bonds, all with *cis* configuration

Halogenation

- The addition of a halide (X₂) to an alkene
- Reaction is fast and does <u>not</u> require heat or light as with alkane
- Addition occurs in anti or trans fashion
- Heterolytic chemistry (movement of 2 electrons)

General reaction


$$C=C$$
 + X_2 \longrightarrow $-C-C$ X $X=CI \text{ or Br}$ Anti or trans addition

Examples:

Alkene

Cyclopentene

Mechanisms for the above reactions:

Cyclopentene

Trans-1,2-dibromocyclopentane

1-methylcyclohex-1-ene (achiral)

Additional examples for your reference:

1.

$$\frac{Br_2}{Br H}Br$$

3.

$$rac{\operatorname{Br}_2}{\operatorname{Br}}$$

4.

Reaction of Alkenes with Halogen and Water/Alcohol

General reaction

$$C = C / \frac{X_2}{R - OH} - \frac{|}{RO} |$$

$$X = CI$$
, Br, $F = R = alkyl/H$

Markovnikov's Rule

- positive species adds to the least substituted end of C=C
- negative species adds to the more substituted end of C=C (stabilized positive charge)

Example 1

$$\begin{array}{c}
H \\
C = C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
H_2O
\end{array}$$

$$\begin{array}{c}
CI \\
H \\
H
\end{array}$$

$$\begin{array}{c}
CI \\
H
\end{array}$$

$$\begin{array}{c}
H \\
H
\end{array}$$

$$\begin{array}{c}
CI \\
H
\end{array}$$

$$\begin{array}{c}
H \\
H
\end{array}$$

$$\begin{array}{c}
CI \\
H
\end{array}$$

$$\begin{array}{c}
H \\
H
\end{array}$$

$$\begin{array}{c}
CI \\
H
\end{array}$$

$$\begin{array}{c}
H \\
H
\end{array}$$

$$\begin{array}{c}
CI \\
H
\end{array}$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
CI \\
H
\end{array}$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
CI \\
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H
\end{array}$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H$$

$$\begin{array}{c}
H$$

$$\end{array}$$

$$\end{array}$$

$$\begin{array}{c}
H$$

$$\end{array}$$

$$\end{array}$$

$$\begin{array}{c}
H$$

$$\end{array}$$

$$\end{array}$$

$$\end{array}$$

$$\begin{array}{c}
H$$

$$\end{array}$$

$$\end{array}$$

$$\end{array}$$

Mechanism

Aside: Halohydrins are useful compounds for further reactions. The chlorohydrin below can be converted into an epoxide by an intramolecular (within a molecule) $S_N 2$ reaction. The epoxide may then be converted into a 1,2-diol (intermolecular $S_N 2$).

epoxide = oxirane = cyclic 3-membered ether

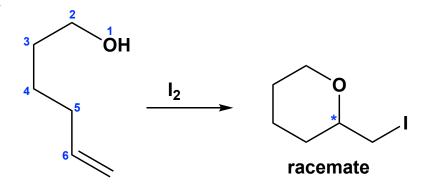
Example 2

Example 3

H C = C
$$\xrightarrow{\text{Cl}_2}$$
 $\xrightarrow{\text{Cl}_2}$ $\xrightarrow{\text{CH}_3\text{OH}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{$

Example 4 (Markovnikov rule)

Example 5


1
$$OH$$
pent-4-en-1-ol

 Br_2
 CCl_4
 $O: Br$
 H
 $O: Br$
 $O: Br$

Oxygen is a better nucleophile than bromide and **intramolecular** (within a molecule) cyclization is FAST. Product is a racemate

Can this reaction occur with chlorine? Yes. Iodine? Yes.

Example 6

5-membered ring formation is favored \rightarrow FAST 6-membered ring formation \rightarrow OK, but much slower

Terminology:

Intramolecular – within the same molecule Intermolecular – amongst molecules

Hydration and Ether Formation

General Reactions:

$$C=C + HOH \xrightarrow{\frac{\Theta}{\text{eg) HBr, HCl}}} - C-C-C - \text{Non-stereospecific Syn and Anti}} - \text{Non-stereospecific Syn and Anti}}$$

$$C=C + HOR \xrightarrow{\frac{\Theta}{\text{H}}} - \frac{1}{\text{C-C-C}} - \text{Non-stereospecific Syn and Anti}} - \text{Non-stereospecific Syn and Anti}}$$

$$R = \text{alkyl}$$

$$Ether$$

Example 1 (follows Markvnikov's Rule)

Mechanism