Systematic Nomenclature

RULES:

- 1. Find the longest chain
- 2. Number from end of the chain, so that the 1st branch point has the lowest number
- 3. Name the chain, then add prefixes (for the groups attached) with number and name the groups attached
- 4. Separate numbers and names by dash

Note: iso = second-to-last carbon of the chain is disubstituted (2 methyl groups) neo = second-to-last carbon of the chain is trisubstituted (3 methyl groups)

Recall: CH₂ – methylene group, CH₃ – methyl group

Examples

3-ethyl-2-methylheptane

4-(1-methylethyl)octane

7-cyclopropyl-4-ethyl-2-methyldecane

Note: Ring Structure Naming

- Prefix with "cyclo"
- Start with numbering at point of maximum branching/most important functional group
- Number so as to give next branch/functional group lowest number

Cycloalkanes

Cyclopropane, C₃H₆

One degree of unsaturation (n-propane is C₃H₈)
C-C-C bond angle (60 °)
Highly reactive due to ring strain

Cyclobutane, C₄H₈

Cyclopentane, C5H10

Cyclopentane

General Molecular Formula of Alkanes

- No rings: general formula is C_NH_{2N+2}
- Each deviation of 2 hydrogens from the C_NH_{2N+2} formula is a degree of unsaturation
- 1 Degree of unsaturation : $C_N H_{2N}$ Alkanes with one ring or double bond
- 2 Degrees of unsaturation : C_NH_{2N-2} Alkanes with two rings or double bonds, or one each

Examples

The above three are structural (constitutional) isomers

Source of Hydrocarbons

- Petroleum (John D. Rockefeller)

Distillation of Petroleum:

• Petroleum is a mixture of alkanes and other hydrocarbons (>>500 compounds)

Physical Properties of Alkanes:

- Intermolecular forces are dominated by London forces
- Alkanes are non-polar because H and C have similar electronegativity
- Soluble in other organic solvents (like dissolves like)
- Not miscible with water \rightarrow floats due to lower density
- Low density ($\rho = rho = g/cm^3$)
 - $\circ \rho$ water ~ 1 g/cm³
 - $\circ \rho$ alkanes ~ 0.7 g/cm³
- Low m.p., b.p.

Separatory Funnel (density separation)

Boiling point trend:

- As the straight chain length increases, so does the bp. This is due to London forces (hydrophobic forces) between the adjacent molecules.

Melting point trend:

- Melting points are related to the crystal structure packing efficiency

e.g. Pentane

Conformations

- Different 3-D shapes a molecule can assume by rotation around single bonds
- Room temperature (20 °C): 15-20 kcal/mol of energy available
- Rotation around C-C occurs rapidly at room temperature
- Steric effect: Repulsion of filled shells of e

n-butane (C₄H₁₀) – Rotation around all bonds still very rapid

- Most stable (most populated conformation) is called anti and has groups as far away as possible

Energy diagram

- The dihedral angle is the angle between the two-methyl groups.

Cycloalkane Conformations

Cyclopropane –bond angle 60° – relatively rigid structure

Cis-1,2-Dimethylcyclopropane

Trans-1,2-Dimethylcyclopropane

Cyclobutane – bond angle close to 90° – does have some flexibility

3D structure

Cyclopentane – bond angles nominally 108° – more flexible than cyclobutane

Cyclohexane – bond angles actually 109°, not 120° as in flat hexagon

