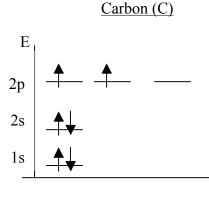

Chem 261


As two hydrogen atoms come together, molecular hydrogen (H₂) is formed

1Å is the average H-H bond distance

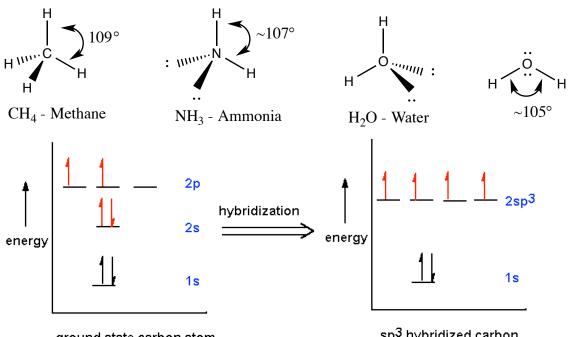
Electronic configuration of carbon (C):

- Atomic number = 6
- Atomic weight = 12

- Carbon needs to gain or lose 4e⁻ to get an inert gas configuration, but this would result in unfavourable charge buildup:

- C⁴⁺ is isoelectronic with He

- C⁴⁻ is isoelectronic with Ne

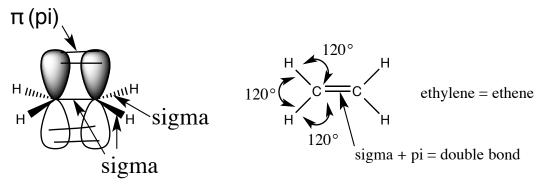

- So, carbon makes up to 4 bonds to <u>share</u> 4e⁻ (covalent bonding)

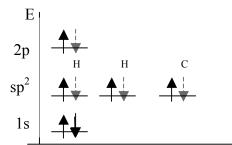
Hybridization:

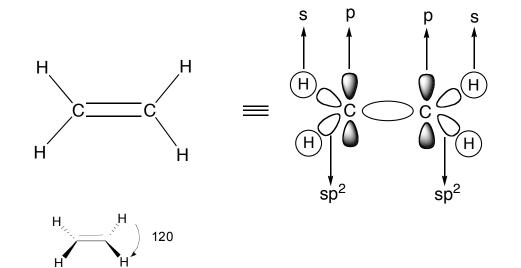
Mixing of atomic orbitals (with the wrong geometry for bonding) to form hybrid orbitals with the correct geometry for bonding

sp³ Hybridization

- Single bonds
- Tetrahedral geometry _
- Angle between two H atoms in methane: 109°, close to that with other elements -
- Often free rotation around single bonds
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)

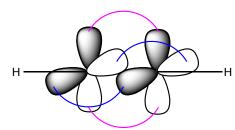

ground state carbon atom atomic orbitals


sp³ hybridized carbon


Figure: Hybridization of 2^{nd} shell s (one) orbitals and p (three) orbitals of carbon

sp² Hybridization

- Double bonds _
- Planar geometry _
- Angle between two atoms: 120° _
- No free rotation around double bonds -
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond) -
- Overlap of p atomic orbitals with s component gives pi molecular orbital (bond) _

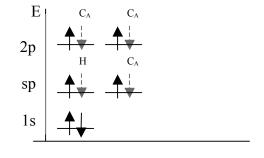


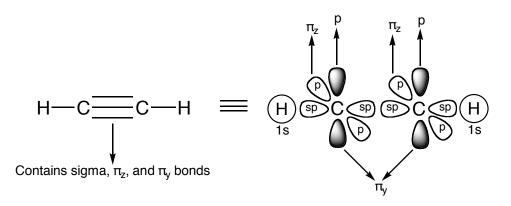
- When atomic orbitals overlap they form molecular orbitals.
- Double bond contains one σ bond and one π bond.
- σ bond has free rotation.
- π bond fixes geometry, does not allow for around the double bond.

sp Hybridization

- Triple bonds
- Linear geometry
- No free rotation around triple bonds

Triple bond:

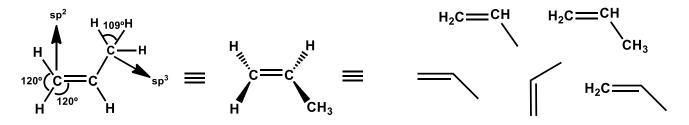

One sigma bond between the $H \longrightarrow C \equiv$ carbons plus two pi bonds formed through p_v and p_z acetylene


acetylene = ethyne

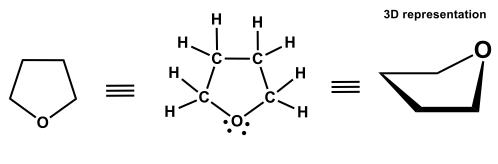
sp Hybridization

- Triple bonds
- Linear geometry
- No free rotation around triple bonds
- Angle between two atoms: 180°

e.g.) Acetylene/Ethyne

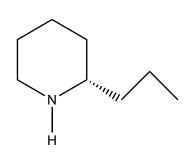

Representation of Molecules

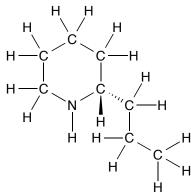
- Show only electrons in outer (valence) shell
- Non-bonding electrons may or may not be shown
- Use element symbols, but carbon can be represented by point of angle or end of line
- Hydrogens and bonds to them from carbon are optional; show others.
- Each line in a structure represents 2 e⁻


- -

Examples:

1. C_3H_3 propene

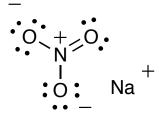



2. Tetrahydrofuran (THF)

Chemical Formula: C₄H₈O Molecular Weight: 72,11

3. Corine (Poison Hemlock)

Chemical Formula: C₈H₁₇N Molecular Weight: 127.23 CH₃ Methyl CH₂ Methylene CH Methine


Formal Charge

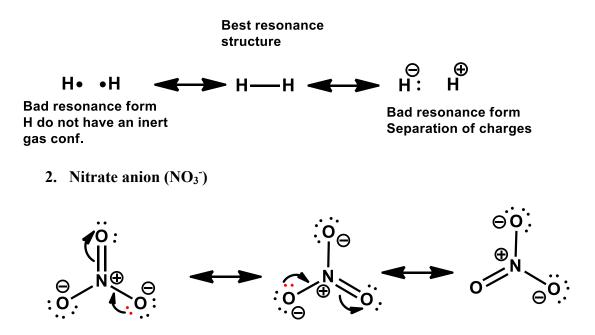
- Convention to keep track of charges
- \sum (sum of) of formal charges on all atoms in a molecule = overall charge on molecule

Rules for calculating formal charge

- Add number of protons in nucleus
- Subtract number of inner shell electrons
- Subtract number of unshared electrons
- Subtract ½ of the number of shared outer shell electrons

1. Sodium Nitrate – NaNO₃

Formal Charge on Nitrogen: +7 (number of protons) -2 (1s electrons) 0 (unshared electrons) $\frac{1}{2} \ge 8 = -4$ (1/2 of shared electrons) +1


Double bonded oxygen: +8 (number of protons) -2 (1s electrons) -4 (unshared electrons) $\frac{1}{2} \ge 4 = -2$ (1/2 of shared electrons) 0 Single bonded oxygen (both): +8 (number of protons) -2 (1s electrons) -6 (unshared electrons) $\frac{1}{2} \ge 2 = -1$ (1/2 of shared electrons) -1 Overall charge on the nitrate anion is = +1 + 0 - 1 - 1 = -1

Resonance Structures: Different drawings of the same molecule.

- Move the electrons, keeping the position of the atoms same
- Maintain inert gas configuration around each atom
- Avoid separation of charges
- Avoid like-charges on adjacent atoms
- Double headed arrow () is used indicate resonance forms

Examples

1. Hydrogen gas, H₂

The structures above are all equally valid; only one needs to be drawn.

Arrow pushing convention: Book keeping of electrons
Movement of an
electron pair

