Chem 261 Jan 12, 2017

Quantitative Analysis

Quantitative: How much of the compound of interest (quantity)
Amounts of atoms in compounds

Organic compound
$$O_2$$
 O_2 O_2 O_3 O_4 O_4 O_5 O_5 O_6 O_7 O_8 O_8 O_9 O_9

Note: Matter cannot be created or destroyed in a chemical reaction, therefore the amount of carbon in the CO_2 is equal to the amount of carbon in the starting sample.

Percent Composition

Weight of carbon (in sample) =
$$\underline{12 \text{ g/mol of C}}$$
 x 10.35 mg of CO₂ = 2.82 mg of C $\underline{44 \text{ g/mol CO}_2}$

Weight of hydrogen =
$$\underline{2(1 \text{ g/mol of H})}$$
 x 3.42 mg of H₂O = 0.383 mg of H 18 g/mol of H₂O

Weight of oxygen =
$$4.34 \text{ mg} - (2.82 \text{ mg of C} + 0.383 \text{ mg of H}) = 1.14 \text{ mg of O}$$

Now one can calculate percentage composition:

% Composition:

%
$$C = \frac{\text{Mass of carbon}}{\text{Mass of sample}} \times 100\% = \frac{2.82 \text{ mg of } C}{4.34 \text{ mg}} \times 100\% = 65.1\%$$

%
$$H = 0.383 \text{ mg of } H = 8.83\%$$

4.34mg

$$\% O = 100\% - 65.1\% - 8.83\% = 26.1\%$$

The empirical (and with additional data, molecular formula) can be determined from % composition

Determining the empirical experimental formula:

Definition: Empirical formula is the ratio of atoms to each other in a molecular formula

There are three steps to calculate the empirical formula:

- 1) Divide each percentage (%) by the atomic weight of the element → crude ratio
- 2) Divide each crude ratio by the smallest crude ratio \rightarrow refined ratio
- Multiply the refined ratio by an integer value $(x2, x3, x4...) \rightarrow$ integral ratio

% Composition	Crude Ratio	Refined Ratio	Integral Ratio
65.1 % C	65.1 / 12.0 = 5.42	5.42 / 1.63 = 3.34	$3.34 \times 3 = 10$
	(% C / At Wt C)		
8.83 % H	8.83 / 1.01 = 8.76	8.76 / 1.63 = 5.39	$5.39 \times 3 = 16$
26.1 % O	26.1 / 16.0 = 1.63	1.63 / 1.63 = 1.00	$1.00 \times 3 = 3$

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Using this formula an empirical weight can be calculated.

C:
$$10 \times 12 = 120 \text{ g/mol}$$

H: $16 \times 1 = 16 \text{ g/mol}$
O: $3 \times 16 = 48 \text{ g/mol}$

$$C_{10}H_{16}O_3 = 184 \text{ g/mol}$$

Note: Suppose the molecular weight is given as 368 g/mol, then the molecular formula is obtained by multiplying the integral ratios by a factor of 2 and it would be $C_{20}H_{32}O_6$. The molecular weight can be independently determined via mass spectrometry.

Gas Law: (Different kinds of units for pressure and volume can be used provided the value of the gas constant is adjusted to those units)

$$PV = nRT$$
 $P = Pressure in atm$

V = Volume in L

N = Moles

T = Temperature in $^{\circ}$ K; K and $^{\circ}$ C are the same size, but 0 K = - 273 $^{\circ}$ C

Standard conditions for temperature and pressure (STP)

old definition of STP used in this course Standard pressure is 1 atmosphere, or 760 mmHg; standard temperature is 273 K 1 mol of gas occupies 22.4 L at STP. –

<u>Sample Question</u>: A certain amount of N₂ gas occupies a volume of 3 mL at 750 mmHg and room temperature (298 K). What volume it will occupy at standard pressure and temperature (STP)?

$$\frac{P_1 V_1}{P_2 V_2} = \frac{nRT_1}{nRT_2}$$
 divide equations to give
$$\frac{P_1 V_1}{P_2 V_2} = \frac{T_1}{T_2}$$

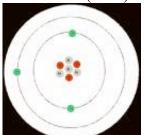
$$\begin{array}{lll} P_1 = 760 \ mmHg & T_1 = 273 \ ^{\circ}K & V_1 = \ ? \\ P_2 = 750 \ mmHg & T_2 = 298 \ ^{\circ}K & V_2 = 3 \ mL \end{array}$$

Solve for V₁

$$V_1 = \underline{T_1 P_2 V_2} = \underline{(273 \text{ °K})(750 \text{ mmHg})(3 \text{ mL})} = 2.71 \text{ mL}$$

 $T_2 P_1$ (298 °K)(760 mmHg)

Question: How many moles of N₂ is 2.71 mL at STP and what is its mass?


Note: 1 mole of an ideal gas occupies 22.4 L at STP.

$$2.71 \times 10^{-3}$$
 L $\times 1$ mole = 1.21×10^{-4} moles of N_2 = 22.4 L

$$1.21 \times 10^{-4} \text{ mol} \times 28 \text{ g/mol} = 3.4 \text{ mg of N}_2$$

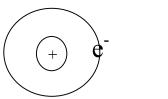
Atomic Theory:

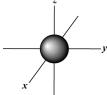
- Neils Bohr (1913) – Won the Nobel prize for his atomic theory – NOT fully correct

- The neutrons (no charge) and protons (positively charged) occupy a dense central region called the nucleus
- The electrons (negatively charged) orbit the nucleus much like planets orbiting the Sun
- de Broglie (1924) His 12 page PhD thesis won him the Nobel prize
 - He proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave - particle duality)

Particles ↔ Waves

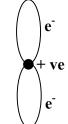
Often the electron density distribution is called an "orbital" by chemists

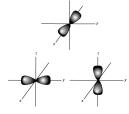

- The orbitals of an atom are described by wave functions (mathematical equations)
- These have no direct physical meaning, but when squared describe electron density


$$\psi = \text{orbital}$$

 $\psi^2 = (\text{orbital})^2 = \text{electron density distribution}$

For the hydrogen (H) atom: >95% of electron density is found in a sphere with diameter of 1Å (10^{-8} cm)


Orbitals:


1. s-Orbital - Spherical shaped (electron density)

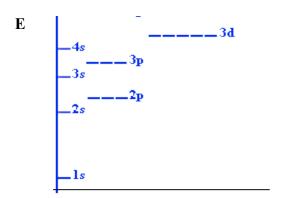
2. *p*-Orbital - Dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Basic Principles:

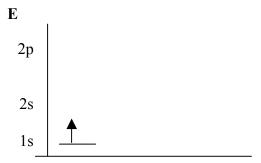
- Like charges repel each other; unlike charges attract each other
- Atoms want to have an inert gas electron configuration (isoelectronic with inert gas, such as He, Ne, Ar. Helium is the inert gas that hydrogen can be isoelectronic with)

Atoms	<u>Protons (+)</u> = Atomic #	Neutrons	1s electrons	2s electrons	2p electrons
Н	1	0	1		
Не	2	2	2		
Li	3	3	2	1	

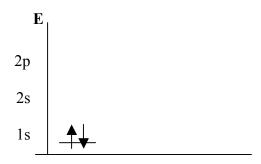
Rules for Filling Electron Orbitals – AUFBAU Rule (Building-Up Principle):

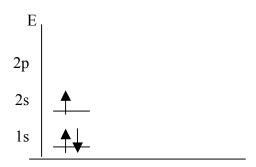

- 1) Add electron to the lowest energy orbital available
- 2) Maximum of two electron per orbital (each having opposite spin quantum number)
 - Pauli Exclusion Principle
- 3) Place one electron into each orbital of the same energy (degenerate orbitals), before adding a second electron
 - Hund's Rule of Maximum Multiplicity

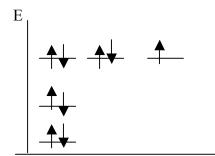
Abbreviation of electron: e


Mass Number = (Number of Protons) + (Number of Neutrons)

Atomic Number – Number of Protons

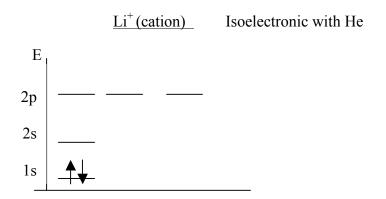

Energy (E) Level Diagram for an Atom:


Hydrogen (H)

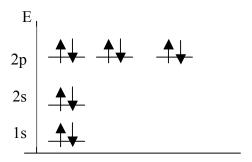

Helium (He)

Lithium (Li)

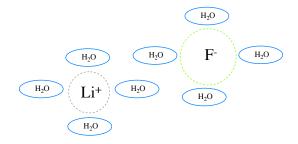
Fluorine (F)

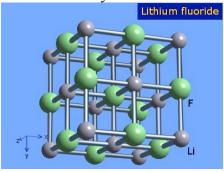

All elements want an inert gas configuration (e.g. Ne) and from the diagrams above, both Li and F are unhappy with unfilled orbitals (not in an inert gas configuration).

Ionic Bonding


Lithium fluoride is an example of <u>ionic bonding</u> in which positive and negative species are bonded to each other. Li could lose 1e⁻ from 2s orbital to become isoelectronic to He (as Li⁺) and F could gain 1e⁻ to become isoelectronic to Ne (as F⁻).

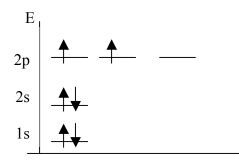
$$Li^0 + F^0 \rightarrow Li^+ + F^-$$


Isoelectronic = Same electron configuration


F (anion) Isoelectronic with Ne

In space, Li⁺ and F⁻ would be attracted to each other In solution, Li⁺ and F⁻ might be separated due to solvation (e.g. water would surround)

In a solid, Li⁺ and F⁻ would form a cubic crystalline solid


Covalent Bonding

- Sharing of electrons between the atoms
- More common in organic chemistry

Electronic configuration of carbon (C):

- Atomic number = 6
- Atomic weight = 12

Carbon (C)

- Carbon needs to gain or lose 4e⁻ to get an inert gas configuration, but this would result in unfavourable charge buildup:
- C⁴⁺ is isoelectronic with He
- C⁴⁻ is isoelectronic with Ne
- So, carbon makes up to 4 bonds to <u>share</u> 4e⁻ (covalent bonding)

Energetics of Forming Bonds

As these two hydrogen atoms come together, molecular hydrogen (H₂) is formed