
77

Review of Chiral Centers

malaria is cause by *Plasmodium* species transmitted by *Anopheles* mosquito

Configuration at the alcohol center:

Cannot assign 2, 3 at first try
At the second atoms in the chain, there is a difference. The carbon attached to one nitrogen, one carbon, and one hydrogen has a higher priority than the carbon attached to three carbons.
One nitrogen trumps three carbons.

- Count 1, 2, 3: Clockwise is *R*.


Physical Properties of Enantiomers

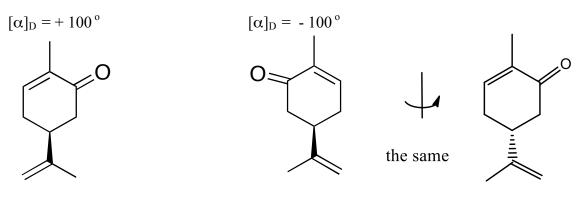
- Same physical properties with achiral agents or procedures
 - Melting point, boiling point, solubility in achiral solvents
- Enantiomers behave differently with chiral agents
- Diastereomers have different physical properties (m.p, b.p, density, solubility)

<u>Light:</u> Electromagnetic radiation

-

Light $\rightarrow E = hv = \frac{hc}{\lambda}$ v = frequency E = energy h = Planck's constant $\lambda = \text{wavelength}$ c = speed of light

Optical Rotation

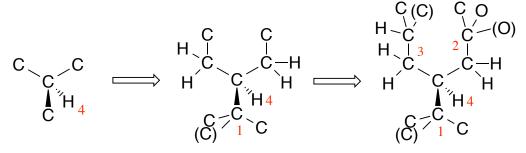

 $[\alpha]_D$ = Absolute rotation at the D line of sodium (589 nm or 5890 Å)

$$[\alpha]_{D} = \frac{\alpha}{c \cdot l}$$

 $\alpha = \text{measured rotation} (^{\circ}) \qquad c = \text{concentration} (g/cm^{3}) \qquad l = \text{path length (dm)}$
 $D = D\text{-line of sodium light} \qquad [\alpha] = \text{absolute rotation}$
 $Degrees (^{\circ}) = + : Clockwise$
 $- : \text{Anticlockwise}$

Optical Activity

- Absolute rotation is 0 ° for achiral molecules
- Rotation of polarized light
 - Dextrorotatory (right) (+)
 - Levorotatory (left) (-)
- Pure enantiomers show equal but opposite rotation


Example: Carvone

enantiomers D-carvone (caraway) D = dextrorotatory (clockwise)

L-carvone (spearmint) L = levorotatory (counter clockwise)

Absolute configuration of D-carvone is S:

- R/S indicate nomenclature (naming convention) and

- D/L indicate optical activity (physical property)

They cannot be easily correlated theoretically (there is no reliable method to predict that a D or L compound would have certain R S stereogenic center designation).

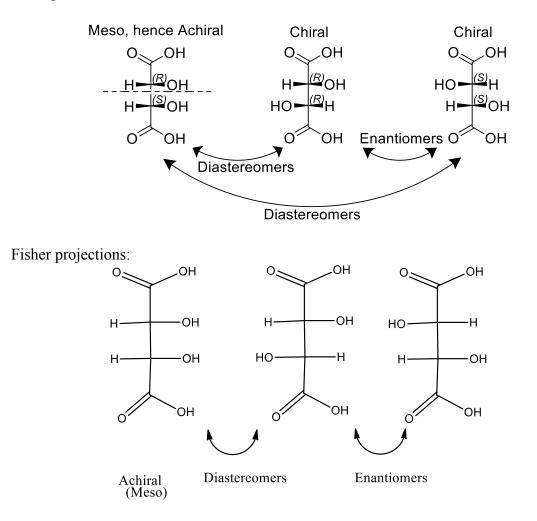
Optical purity (experimental) = enantiomeric excess = e.e. (theoretical)

Optical purity is the excess of one enantiomer over the other

 $[\alpha]_D$ = Absolute rotation of a compound

Calculating Optical Purity

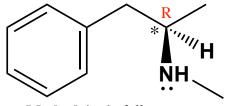
R	S	Rotation (°)	Optical Purity (%)
100 %	0 %	-100 °	100 %
75 %	25 %	-50 °	50 %
50 %	50 %	0 °	0 %
25 %	75 %	+50 °	50 %
0 %	100 %	+ 100 °	100 %


For this example for D and S-carvone, assume the pure S enantiomer has $+100^{\circ}$ rotation

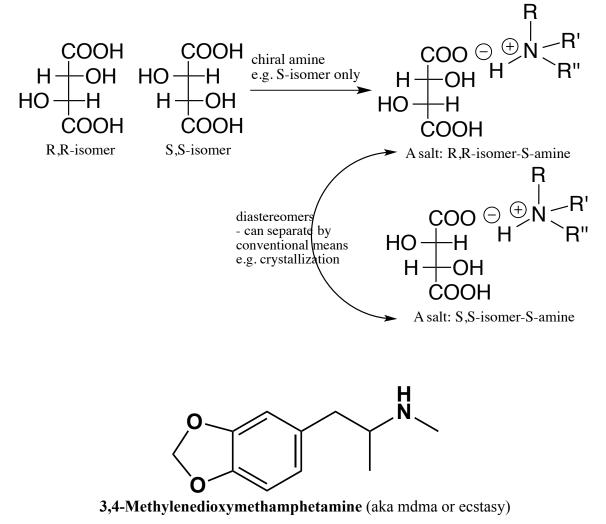
If a solution is an equivalent mix of 1:1 R + S enantiomers, α measured = 0° A 50:50 mixture of enantiomers is called a *racemic mixture*

Fisher Projections

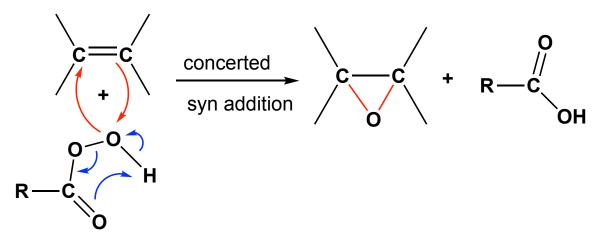
A method of drawing chemical structures, where the horizontal components are coming towards you and the vertical ones are going back


Example: tartaric acid

Resolution: Separation of enantiomers


- Physical separation (crystallization of specific enantiomer)
- Conversion to diastereomers, which can be separated
 - e.g. Make salts by acid-base reaction
- A chiral agent is necessary to allow for this resolution

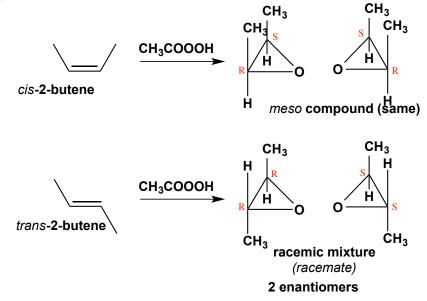
For example, the enantiomers of tartaric acid can be separated by forming diastereomeric salts with a chiral amine, such as methodrine:


Methedrine's full structure

Salt formation with methedrine:

Stereospecific Reactions: A process wherein the starting material determines the stereochemistry of the product(s)

Example: formation of epoxides



2-butene and peracid react in a concerted syn addition to produce an oxirane or epoxide (which is a 3-membered ring ether)

Concerted: all the bonds are broken and formed at the same time

Syn addition: both additions occur on the same face of the molecule

Comparing cis vs trans:

achiral starting material leads to achiral outcome (meso or racemate) – but cis-2-butene gives meso whereas trans-2-butene gives a 1:1 mix of enantiomers