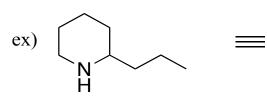
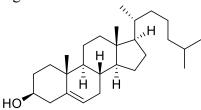
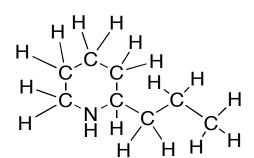

Representation of Molecules


- Show only electrons in outer (valence) shell
- Non-bonding electrons may not be shown
- Use element symbols, but carbon can be represented by point of angle or end of line
- Hydrogens and bonds to them from carbon are optional, show others
- ex) C₃H₆ (propene)

Ex) Tetrahydrofuran (THF)



Chemical Formula: C_4H_8O Molecular Weight: 72.1070

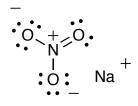


coniine (poison hemlock)

E.g. Cholesterol:

Chemical Formula: C₂₇H₄₆O Molecular Weight: 386.6640

Formal Charge


- Convention to keep track of charges
- \sum (sum of) of formal charges = charge on molecule

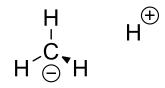
Rules

- Add number of protons in nucleus
- Subtract number of inner shell electrons
- Subtract number of unshared electrons
- Subtract ½ of the number of shared outer shell electrons

E.g.

1. Sodium Nitrate – NaNO₃

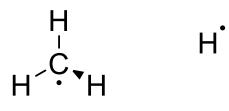
Double bonded oxygen:
+8 (number of protons)
-2 (1s electrons)
-4 (unshared electrons)
$$\frac{1}{2} \ge 4 = -2$$
 (1/2 of shared electrons)
0


Single bonded oxygen (both): +8 (number of protons) -2 (1s electrons) -6 (unshared electrons) $\frac{1}{2} \ge \frac{-1}{2} (\frac{1}{2} = \frac{-1}{2} (\frac{1}{2} = \frac{-1}{2} + \frac{1}{2} = \frac{-1}{2} =$

Formal Charge on Nitrogen: +7 (number of protons) -2 (1s electrons) 0 (unshared electrons) $\frac{1}{2} \ge 8 = -4$ (1/2 of shared electrons) +1

2. Methane:

Formal Charge on Carbon: +6 (number of proton) -2 (1s electron) 0 (unshared electrons) $\frac{1}{2} \ge 8 = -4$ (1/2 of shared electrons) 0 Formal charge on Hydrogen: +1 (number of proton) 0 (inner shell electron) 0 (unshared electrons) $\frac{1}{2} \ge 2 = -1$ (1/2 of shared electrons) 0


3) Methyl Anion/Carbanion:

Formal Charge on Carbon: +6 (number of proton) -2 (1s electron) -2 (unshared electrons) $\frac{1}{2} \ge 6 = -3$ (1/2 of shared electrons) -1

Formal charge on H⁺: +1 (number of proton) 0 (inner shell electron) 0 (unshared electrons) $\frac{1}{2} \ge 0 = 0 (1/2 \text{ of shared electrons})$ +1 Formal charge on Bonded Hydrogen: +1 (number of proton) 0 (inner shell electron) 0 (unshared electrons) $\frac{1}{2} \ge \frac{-1}{0} (1/2 \text{ of shared electrons})$

4) Methyl Radical:

Formal Charge on Carbon: +6 (number of proton) -2 (1s electron) -1 (unshared electrons) $\frac{1}{2} \ge 6 = -3$ (1/2 of shared electrons) 0 Formal charge on Hydrogen: +1 (number of proton) 0 (inner shell electron) 0 (unshared electrons) $\frac{1}{2} \ge \frac{1}{2} = -1 (1/2 \text{ of shared electrons})$

Formal charge on H :

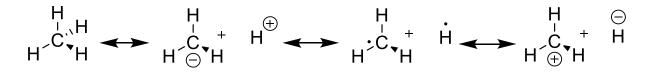
+1 (number of proton) 0 (inner shell electron) -1 (unshared electrons) $\frac{1}{2} \ge 0$ (1/2 of shared electrons) 0

5) Methyl Cation:
H
H
H

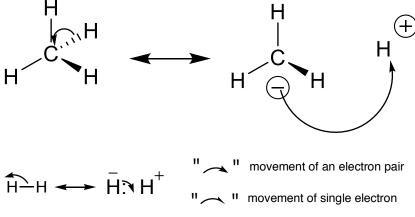
$$\stackrel{(-)}{\leftarrow}$$

H
 $\stackrel{(-)}{\leftarrow}$
H

Formal charge on Carbon +6 (number of protons) -2 (inner shell e-) -3 (1/2 shared e-) Formal Charge on H : +1 (number of protons) 0 (inner shell electron) -2 (unshared electrons) $\frac{1}{2} \ge 0$ (1/2 of shared e-

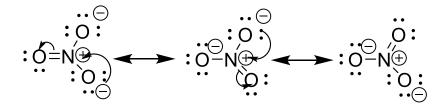

0

+1


Resonance:

- move the electrons, keeping the position of atoms same \rightarrow gives different picture of same molecule
- maintain inert gas configuration around each atom
- avoid separation of charges
- avoid like-charges on adjacent atoms

Eg. Methane:


- they are all resonance forms but not necessarily good pictures (significant representations of actual structure
- CH₄ is the best resonance form
- Double headed arrow (\rightarrow) is used indicate resonance forms

* this is called "arrow pushing" \rightarrow bookkeeping of electrons

Resonance structure example:

1. nitrate anion (NO_3)

