
Atomic theory:

- Neils Bohr (1913) - won his Nobel prize for his atomic theory - NOT fully correct

- the neutrons (no charge) and protons (positively charged) occupy a dense central region called the nucleus
- the electrons (negatively charged) orbit the nucleus much like planets orbiting the Sun

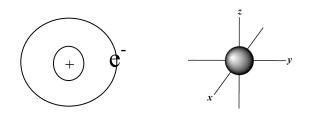
- de Broglie (1924) – his 12 page PhD thesis won him the Nobel prize

- he proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave-particle duality)

Particles \leftrightarrow Waves

- the orbitals of an atom are described by wave functions (mathematical equations) –

they have no direct physical meaning but when squared, provide electron density - ψ = orbital


 $-\psi^2 = (orbital)^2 = electron density distribution$

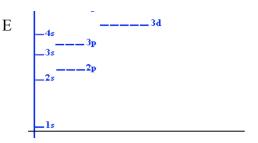
Note. Often the electron density distribution is called an "orbital" by chemists

For hydrogen (H) atom: >95% of electron density is found within $1\text{\AA} = 10^{-8}$ cm

Orbitals:

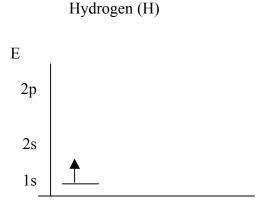
1. S-orbital - spherical shaped (electron density)

2. p-orbital - dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

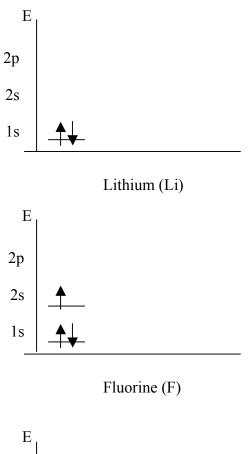

Basic principles:

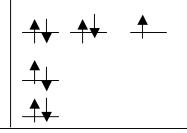
- like charges repel each other; while unlike charges attract each other
- atoms want to be in inert gas electron configuration (isoelectronic with inert gas; such as He, Ne, Ar,.. Helium is the inert gas that Hydrogen can be isoelectronic with)

Atoms	Protons (+)	Neutrons	1s electrons	2s electrons	2p electrons
Н	1	0	1		
He	2	2	2		
Li	3	3	2	1	


Abbreviation of electron - e

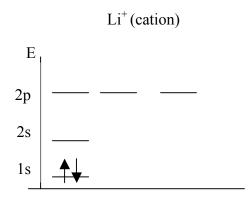
Mass Number = (Number of Protons) + (Number of Neutrons) Energy (E) level diagram for an atom:



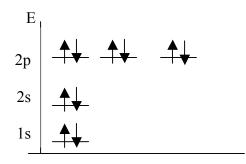

Rules for filling electron – AUFBAU rule (Build up Principle):

- add electron to lowest energy orbital available
- maximum two electron per orbital (each having opposite spin quantum number)
- Pauli Exclusion principle
- fill 1 electron into each orbital of same energy (degenerate orbital), then add second electron Hund's rule

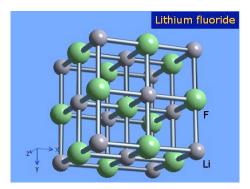
Helium (He)



- all elements want inert gas configuration (e.g. Ne) and from above diagrams both Li and F are unhappy with unfilled orbitals (not in inert gas configuration)

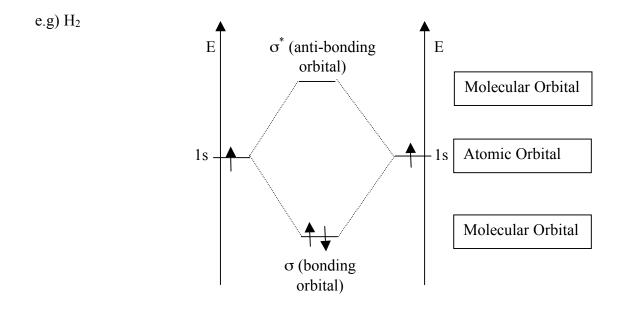

Bonding - Ionic

- isoelectronic = same electron configuration
- Li could lose 1e⁻ from 2s orbital to be isoelectronic to He (as Li⁺) and F could gain 1e⁻ to be isoelectronic to Ne (as F⁻)

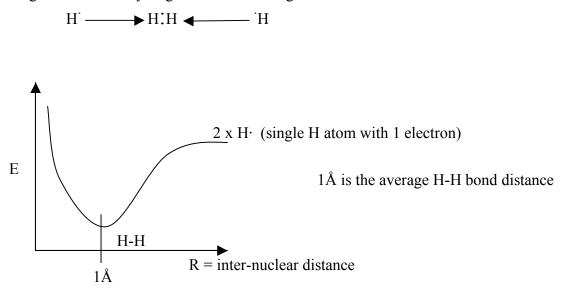

$$Li^{o}$$
 + F^{o} \rightarrow Li^{+} + F^{-}

F⁻ (anion)

- in space these ions would be attracted to each other
- in solution they might be separated due to solvation (e.g. water would surround)
- in solid, they would form a crystalline solid structure

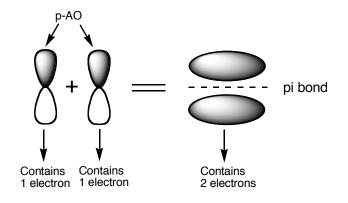


Lithium fluoride is an example of Ionic bonding in which positive and negative species are bounded to each other.


Covalent Bonding

- Sharing of electrons between the atoms.

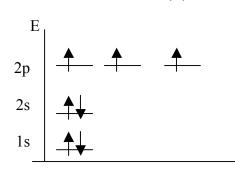
Energetics of Forming Bonds



e.g As these two hydrogen atoms come together

Linear Combination of Atomic Orbitals (LCAO)

- Gives molecular orbitals (MO)
- Overlap of s atomic orbitals (AO) \rightarrow gives sigma(σ) MO (cylindrical symmetry) -
- Overlap of p AO \rightarrow gives pi(π) MO _


Difference between AO and MO \rightarrow AO present on an atom while MO present between two atoms when bond is formed.

In terms of strength $\rightarrow \sigma$ bond is stronger than a π bond. But a double bond is stronger than a single bond because double bonds contain two bonds (σ -bond + π bond).

Electronic configuration of carbon (C):

- atomic number = 6-
- atomic weight = 12
- other isotopes of carbon _

- ¹³C (6p⁺, 7n) is a stable isotope, 1% natural abundance - ¹⁴C (6p⁺, 8n) is radioactive, $t_{1/2} = 5700$ yrs, ¹⁴C dating of organic material

Carbon (C)

- Need to gain or lose 4e⁻ to get inert gas configuration
- C^{4+} isoelectronic with He
- C⁴⁻ isoelectronic with Ne
- So, carbon makes 4 bonds to share 4e⁻ (covalent bonding)

Hybridization:

- mixing of atomic orbitals (with wrong geometry for bonding) to form the hybrid orbitals with the correct geometry for bonding

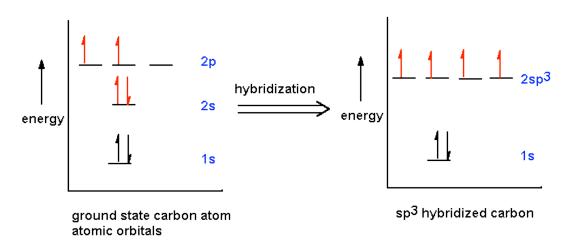


Figure: Hybridization of 2nd shell s (one) orbitals and p (three) orbitals of carbon

- So 1 (2s) orbital + 3 (2p) orbitals = 4 (sp^3) hybridized orbital
- the 2s orbital and 2p orbitals of carbon are mixed (hybridized) to form the four degenerate sp³ orbitals
- note: sp³ comes from the fact that one s-orbital and three p-orbitals are mixed
- once the hybrid orbitals are formed, four hydrogen atoms can share the four electrons of the outer (bonding) shell of carbon to form four covalent bonds
- now, carbon is isoelectronic to neon and hydrogen is isoelectronic to helium

e.g. Methane, CH₄:

- tetrahedral geometry
- electron density is equidistance from nucleus
- four covalent bond between the carbon atom and the hydrogen atoms
- the angle between two H-atoms = 109[•]