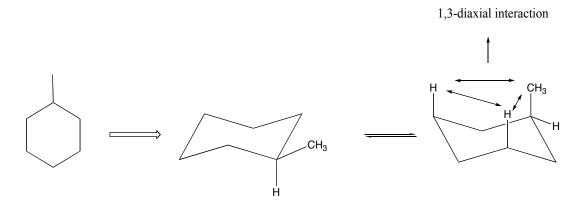
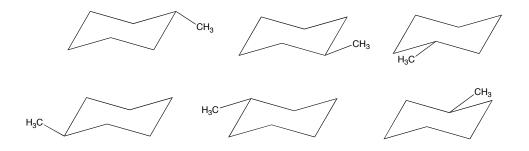

Review

Conformations – different shapes a single molecule may assume via rotation around single bonds


Isomers - different compounds with same molecular formula – 2 basic types 1. Structural/constitutional isomers

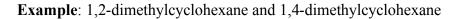
- Compounds with same molecular formula
- 2. Stereoisomers same connectivity but different 3-D structure 2 sub-types
 - (a) diastereomers/diastereoisomers (eg. cis/trans)
 - (b) enantiomers (non-superimposable mirror images of same molecule)

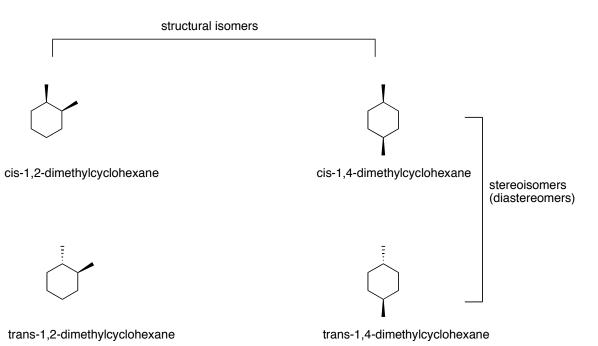
Cyclohexane Conformations



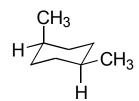
Substituted Cyclohexanes - Draw most stable conformation

- Largest (bulkiest group close to ring) group generally placed equatorial – otherwise get unfavorable 1,3-diaxial interactions - 1,3-diaxial interaction (steric effect) makes this conformation less stable.

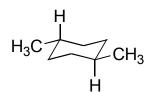

<u>Most Stable Conformation of Methylcyclohexane</u> – 6 drawings of same molecule below



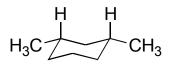
Polysubstituted cyclohexane


Isomers - different compounds with same molecular formula

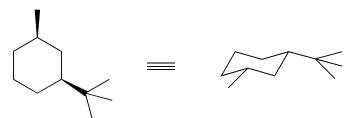
Conformers – different shapes of the same molecule



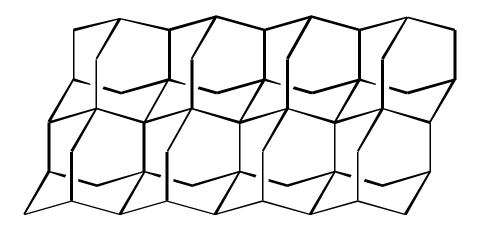
Example: Cis-1,4-Dimethylcyclohexane:


Cis-1,4-Dimethyl Cylcohexane

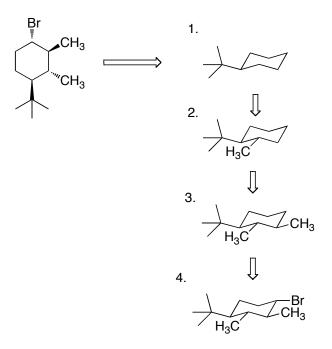
Example: Trans-1,4-Dimethylcyclohexane:


Trans-1,4-Dimethyl Cylcohexane

Example: Cis-1,3-Dimethylcyclohexane:


Cis-1,3-Dimethyl Cylcohexane

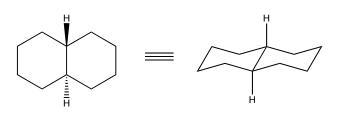
Example: Cis-1-tert-butyl-3-methyl-cyclohexane


Note that the largest substituent (tert-butyl) is placed in the equatorial position to avoid destabilizing 1,3 diaxial interactions and the methyl is placed *syn* to the tert-butyl group.

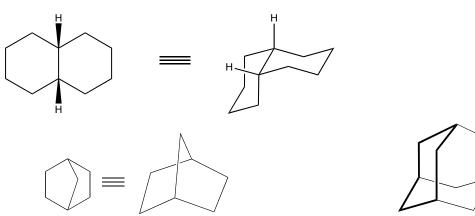
Diamond:

Further Example:

Steps for drawing



Note on drawing the most stable conformation of substituted cyclohexanes:


- generally, draw chair conformation of cyclohexane
- put the largest group in equatorial position
- draw the next group on the correct side (face) with respect to the largest group

Example of a basic Bicyclic conformation:

Trans-decalin:

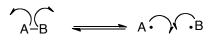
Cis-decalin:

Norbornane

Adamantane

Reactions of alkanes: two will be considered

Further reading: Wade, L.G. Jr., Organic Chemistry; Custom Edition for the University of Alberta, Chemistry 164/261, Volume 1, Pearson Learning Solutions, Canada. Pp 176-181


1) Com R-H	bustion +	– already dis O ₂	cussed heat →	CO ₂	+	H ₂ O						
R=Any alkyl group												
2) Halogenation of alkanes												
R-H	+	X_2	Light (hv) →) R-X	+	HX						
R= any alkane (group), R-X = alkyl halide / haloalkane (X=Cl, Br, F); I ₂ fails												
Substitution reaction – substitute H with X												
eg.				b								
CH ₄ methane	+	Cl ₂		hʊ		CH ₃ Cl methyl chlo chlorometh	+ ride ane	HCI				
		light energy, $E = hv$ $h = Planck's \text{ constant } 6.6 \text{ x}10^{-34} \text{ joules-sec}$ v = frequency of light										
CH ₃ CI	+	Cl ₂	h	υ		CH ₂ Cl ₂ methylene cl dichlorometh	+ nloride iane	HCI				
CH ₂ Cl ₂	+	Cl ₂	h	ט	→	CHCl ₃ chloroform trichlorometh	+ nane	HCI				

CHCl ₃	+	Cl ₂	ł	าบ	→	CCl ₄	+	HCI
						carbon tetrachloride tetrachloromethane		

Mechanism of reaction:

- step by step description of what happens during a reaction (hypothesis) Two kinds of mechanism-

1. homolytic : (one electron to each atom connected by a bond) radical rxn eg. halogenation of alkanes.

2. heterolytic : (both electrons in bond go to one atom) eg. addition reactions of alkenes, elimination reactions.

$$A \xrightarrow{-B} \xrightarrow{\oplus} A^{\oplus} \xrightarrow{} B^{\ominus}$$

Homolytic reactions (less common than heterolytic reactions) - initiated by heat (Δ) or by light (hv) Mechanism of halogenation of CH₄:

Note: above mechanism applies to other halogens (F, Cl, Br)