Reactivity:

Reactants (starting material): C_5H_{12} and O_2 Products: CO_2 and H_2O

 E_a : activation energy $\Delta E = \Delta G$: Gibbs free energy (enthalpy) change for the reaction * this reaction is an exothermic reaction, heat is released during reaction

- ΔG = change in energy of system or change in Gibbs free energy.

 $\Delta G = -RTlnK_{eq}$ $R = gas constant = 0.082 L \cdot atm$ mol·K $T = temperature in {}^{o}K$ ΔG = change in energy of system (determines equilibrium) E_a = activation energy \rightarrow determines rate of reaction

A + BC + D K_{eq} = equilibrium constant = [C][D] [C] = concentration of compound C [A][B]

Endothermic Reaction

Transition state (TS) = bonds partially made/broken

- > The transition state is the point of highest energy on the diagram.
- > The transition state is **not** an intermediate.

Reaction proceeding through an intermediate

NB: The Rate Determining Step is the TS with the larger E_A , which will be the slowest step; that is for the diagram to the left, the first step is the rate determining step.

Review

Change in Entropy $\Delta G = \Delta H - T\Delta S$ (2nd law of thermodynamics) \downarrow Change in enthalpy = bond energy

Exothermic $\Delta G = Negative$

Endothermic $\Delta G = Positive$

Bond Energy

Bond	Bond Energy (kcal/mol)
H-C	99
H-O	111
C-C	83
C=O	179
0=0	119

Ex)
$$CH_4 + 2 O_2 \longrightarrow CO_2 + 2 H_2O - Exothermic reaction (releases Energy (E))$$

 $\Delta E_{reaction} = \Delta E_{SM} - \Delta E_{pdt}$

For CH ₄ :	4 x C-H bond 2 x O=O ΔE_{SM}	$s = 4 \times 99$ = 2 x 119	= 396 kcal/mol = <u>238 kcal/mol</u> = 634 kcal/mol	ΔE_{SM} = sum of bonds broken (enthalpy)	
For products	$2 C=O = 4 H-O = \Delta E_{pdt}$	$= 2 \times 179 = 3$ = 4 x 111 = 3 = 8	358 kcal/mol <u>444 kcal/mol</u> 802 kcal/mol	ΔE_{pdt} = sum of bonds form	ned

 $\Delta E_{reaction} = 634 \text{ kcal/mol} - 802 \text{ kcal/mol} = -168 \text{ kcal/mol}$ (exothermic reaction, energy released)

Acids - Bases

- Bronsted Lowry :
 - An acid donates proton (\mathbf{H}^{+})
 - A base accepts a proton (\mathbf{H}^{+})

Ex:

HCI \longrightarrow H⁺ + CI⁻ NaOH \longrightarrow Na⁺ + OH⁻

HCI + NaOH → NaCI + H-OH

- Lewis Acid/Base:

- An acid accepts a pair of electrons
- A base donates a pair of electrons

Examples of Lewis acids:

H+ AlCl₃ BH₃

Definition

$$H \xrightarrow{\frown} A \qquad \qquad H^{\oplus} + \xrightarrow{\bigcirc} A \qquad \qquad K_{eq} = K_a = \underbrace{[H^+][A^-]}_{[HA]} \qquad \qquad K_a = acidity constant [HA] \qquad \qquad pK_a = -logK_a$$

Ex #1) Methane:

H-CH₃
$$\longrightarrow$$
 H⁺ + CH₃⁻
 $K_a = [\underline{H^+}][\underline{CH_3}] = 10^{-46}$
 $[HCH_3]$
 $pK_a = -logK_a = 46$

Ex # 2) Ammonia Gas:

$$pK_a = 36$$

"pKa of Ammonia" in biological system

$$H = N = H = H + H^{\oplus}$$

$$H = N = H + H^{\oplus}$$

$$H = N = H + H^{\oplus}$$

$$H = H + H^{\oplus}$$
Ammonium Cation
$$pK_a = 9.3$$

Ex #3) Water:

$$K_a = [H^+][OH] = 10^{-15.7}$$

[HOH]

$$pK_a = -logK_a = 15.7$$

Proton Transfer:

w Trequency