CHEM 261 Nov 03, 2014

OsO₄, osmium tetroxide.

$$C=C$$
 OsO_4
 H_2O
 $OHOH$
 $OHOH$
 $Carboxylic acid when heated.

Syn - addition$

It goes through this intermediate:

eg.

Reactions of alkynes

- 1. Addition (analogous to alkenes)
- 2. At terminal carbon bearing H

Addition

Hydrogenation

1. HBR_2 then $H^+ + H_2O$

<u>OR</u>

2. H₂ and catalyst. However, need a less reactive catalyst to stop reaction at the cis-2-butene product.

Lindlar's catalyst:

Pd, BaSO₄ (or CaCO₃ is often used in place of BaSO₄), and quinoline (see below):

➤ These conditions allows for selective hydrogenation of alkynes to alkenes.

Halogenation

Eg.

HX Addition (syn)

$$H_3C-C\equiv C-CH_3$$
 $\xrightarrow{\text{addition}}$ H_3C CH_3 $C=C$

Eg. Propyne (follows Markovnikov's rule):

Addition of water (requires acid)

Tautomers (eg. keto/enol) are rapidly equilibrating structural isomers. The process is called **tautomerisation**.

Anti-Markovnikov Water Addition – Hydroboration-Oxidation

Two possibilities for reaction of Organoboranes: water and acid to add H and give alkene or NaOH and H₂O₂ to give enol tautomer that converts (equilibrium) primarily to keto tautomer (aldehyde shown below)

H₃C−C≡C−H
$$\frac{1) R_2BH}{2) NaOH, HOOH}$$

1) R₂BH $\frac{1}{1}$ \frac