CHEM 261 Nov 17, 2014

Rubber:

Rubber is polymer of Isoprene units

In nature it may be obtained from Dandelion plant; extracted white sap (latex) is used to prepare Latex and then rubber as a sticky gum (100 lbs/acre).

Rubber tree: *Hevea brasiliensis* (~ 2500 lb rubber/acre).

Making Rubber (polymerization):

Conjugated Carbocation: positive charge is separated by single bond from double bond (increases stability of the cation).

addition
$$H^+$$
 H_2 H_2 H_3 H_4 H_4 H_4 H_5 H_5 H_6 H_8 H

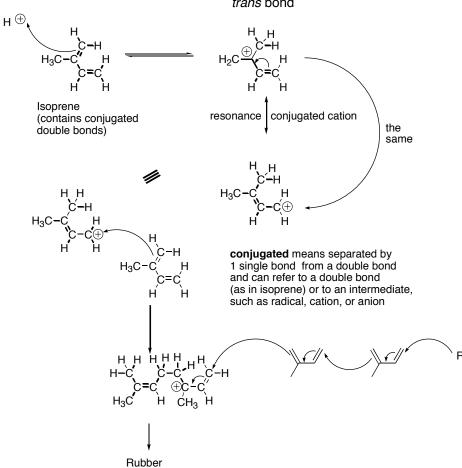
Different possibilities for polymerization, however the trans form is the favored pathway:

i)
$$H_3C$$
 CH_3 H H_3C CH_3 H H_3C H_3

$$\begin{array}{c|c}
 & CH_2 \\
\hline
 & H_2C \\
\hline
 & H_3C \\
\hline
 & H_3C \\
\hline
 & H_3C
\end{array}$$

Trans-Polyisoprene Chewing gum Cis-Polyisoprene Natural Rubber

Another depiction of the same process


Rubber cis bond

Rubber + carbon + sulphur
$$\xrightarrow{\Delta}$$
 vulcanised rubber now elastic

 H_2SO_4 or ROOR

2-methyl-1,3-butadiene

chewing gum trans bond

Styrene-Butadiene (SBR)

Trans Arrangement of double bond

Lecture Outline & Assignment 5 Alcohols and Ethers

$$R$$
—OH R —O— R' R 0

Alcohol Nomenclature

Rules:

Find the longest chain with the OH and Number from end to give –OH the lowest number. Drop "e" of alkane, and add "ol"

Examples:

➤ CH₃CH₂OH - ethanol (grain alcohol or ethyl alcohol)

➤ CH₃CH₂CH₂OH - propanol (propan-1-ol, n-propanol, or n-propyl alcohol)

Examples of naming convention:

2-Cyclohexen-1-ol Or Cyclohex-2-en-1-ol

3-(S)-5-ethyl-4(Z)-octen-3-ol