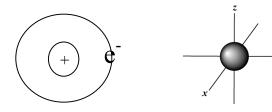
Chem 261 Sept 8, 2014

Atomic theory:

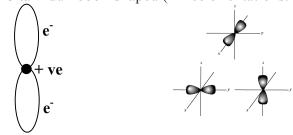
- Neils Bohr (1913) – won his Nobel prize for his atomic theory – NOT fully correct

- the neutrons (no charge) and protons (positively charged) occupy a dense central region called the nucleus
- the electrons (negatively charged) orbit the nucleus much like planets orbiting the Sun
- de Broglie (1924) his 12 page PhD thesis won him the Nobel prize
 - he proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave-particle duality)

Particles ↔ Waves


- the orbitals of an atom are described by wave functions (mathematical equations) they have no direct physical meaning but when squared, provide electron density
- $-\psi = orbital$
- $-\dot{\psi}^2$ = (orbital) ² = electron density distribution

Note. Often the electron density distribution is called an "orbital" by chemists


For hydrogen (H) atom: >95% of electron density is found within $1\text{\AA} = 10^{-8}$ cm

Orbitals:

1. S-orbital - spherical shaped (electron density)

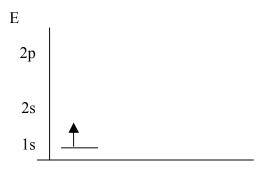
2. p-orbital - dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Basic principles:

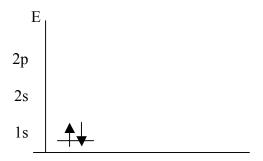
- like charges repel each other; while unlike charges attract each other
- atoms want to be in inert gas electron configuration (isoelectronic with inert gas; such as He, Ne, Ar,.. Helium is the inert gas that Hydrogen can be isoelectronic with)

Atoms	Protons (+)	Neutrons	1s electrons	2s electrons	2p electrons
Н	1	0	1		
Не	2	2	2		
Li	3	3	2	1	

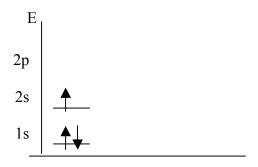
Abbreviation of electron - e

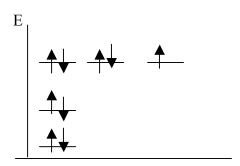

Mass Number = (Number of Protons) + (Number of Neutrons)

Energy (E) level diagram for an atom:


Rules for filling electron – AUFBAU rule (Build up Principle):

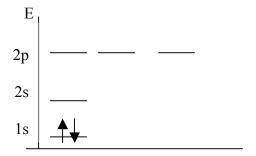
- add electron to lowest energy orbital available
- maximum two electron per orbital (each having opposite spin quantum number)
- Pauli Exclusion principle
- fill 1 electron into each orbital of same energy (degenerate orbital), then add second electron Hund's rule


Hydrogen (H)

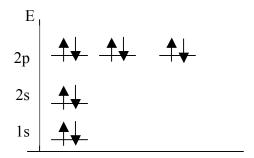

Helium (He)

Lithium (Li)

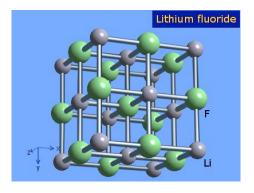
Fluorine (F)


- all elements want inert gas configuration (e.g. Ne) and from above diagrams both Li and F are unhappy with unfilled orbitals (not in inert gas configuration)

Bonding - Ionic

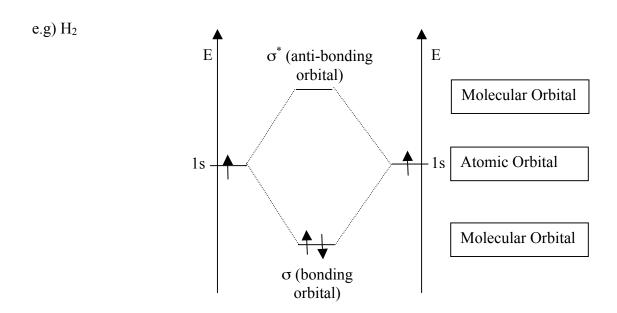

- isoelectronic = same electron configuration
- Li could lose 1e⁻ from 2s orbital to be isoelectronic to He (as Li⁺) and F could gain 1e⁻ to be isoelectronic to Ne (as F⁻)

$$Li^{0}$$
 + F^{0} \rightarrow Li^{+} + F^{-}

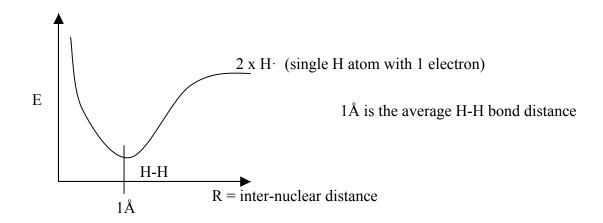


F⁻ (anion)

- in space these ions would be attracted to each other
- in solution they might be separated due to solvation (e.g. water would surround)
- in solid, they would form a crystalline solid structure

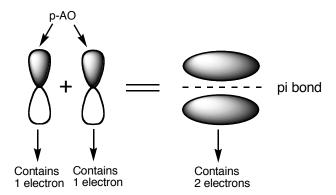


Lithium fluoride is an example of Ionic bonding in which positive and negative species are bounded to each other.


Covalent Bonding

- Sharing of electrons between the atoms.

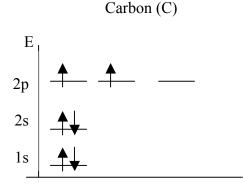
Energetics of Forming Bonds



e.g As these two hydrogen atoms come together

Linear Combination of Atomic Orbitals (LCAO)

- Gives molecular orbitals (MO)
- Overlap of s atomic orbitals (AO) \rightarrow gives sigma(σ) MO (cylindrical symmetry)
- Overlap of p AO \rightarrow gives pi(π) MO


Difference between AO and MO → AO present on an atom while MO present between two atoms when bond is formed.

In terms of strength $\rightarrow \sigma$ bond is stronger than a π bond. But a double bond is stronger than a single bond because double bonds contain two bonds (σ -bond + π bond).

Electronic configuration of carbon (C):

- atomic number = 6
- atomic weight = 12
- other isotopes of carbon

 - ¹³C (6p⁺, 7n) is a stable isotope, 1% natural abundance ¹⁴C (6p⁺, 8n) is radioactive, t_{1/2} = 5700 yrs, ¹⁴C dating of organic material

- need to gain or lose 4e⁻ to get inert gas configuration – but this gives unfavourable charge buildup:
- C⁴⁺ isoelectronic with He
- C⁴- isoelectronic with Ne
- so, carbon makes 4 bonds to share 4e⁻ (covalent bonding)

Hybridization:

- mixing of atomic orbitals (with wrong geometry for bonding) to form the hybrid orbitals with the correct geometry for bonding

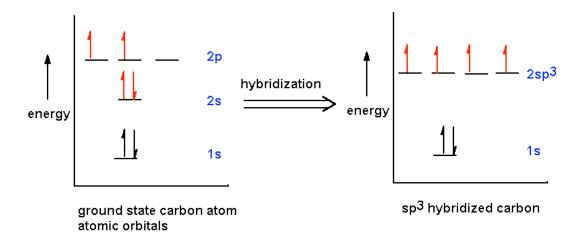


Figure: Hybridization of 2nd shell s (one) orbitals and p (three) orbitals of carbon

- So 1 (2s) orbital + 3 (2p) orbitals = $4 (sp^3)$ hybridized orbital
- the 2s orbital and 2p orbitals of carbon are mixed (hybridized) to form the four degenerate sp³ orbitals
- note: sp³ comes from the fact that one s-orbital and three p-orbitals are mixed
- once the hybrid orbitals are formed, four hydrogen atoms can share the four electrons of the outer (bonding) shell of carbon to form four covalent bonds
- now, carbon is isoelectronic to neon and hydrogen is isoelectronic to helium

e.g. Methane, CH₄:

- tetrahedral geometry
- electron density is equidistance from nucleus
- four covalent bond between the carbon atom and the hydrogen atoms
- the angle between two H-atoms = 109°