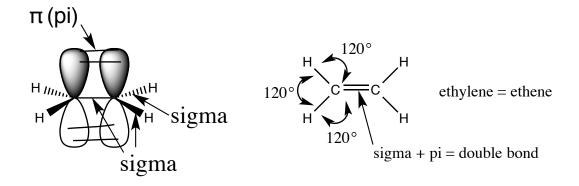
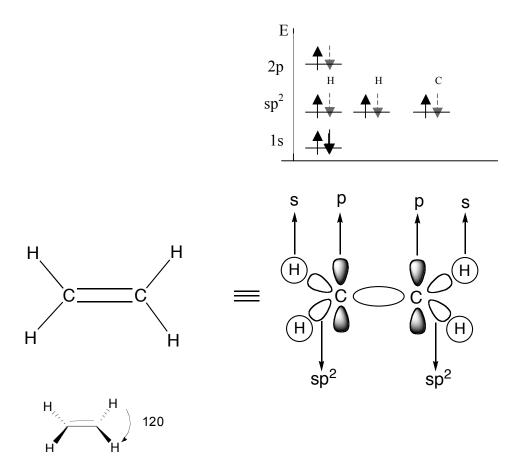

CHEM 261 Sept 14, 2015

Representation of Molecules

- Show only electrons in outer (valence) shell
- Non-bonding electrons may or may not be shown
- Use element symbols, but carbon can be represented by point of angle or end of line
- Hydrogens and bonds to them from carbon are optional; show others.
- Each line in a structure represents 2 e⁻
- Solid wedge (): Toward you / out of the page
- Dashed wedge (""): Away from you / into the page

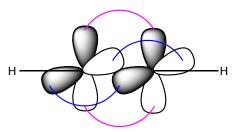

sp³ Hybridization

- Single bonds
- Tetrahedral geometry
- Angle between two H atoms: 109°
- Often free rotation around single bonds
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)



sp² Hybridization

- Double bonds
- Planar geometry
- Angle between two atoms: 120°
- No free rotation around double bonds
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)
- Overlap of p atomic orbitals with s component gives pi molecular orbital (bond)

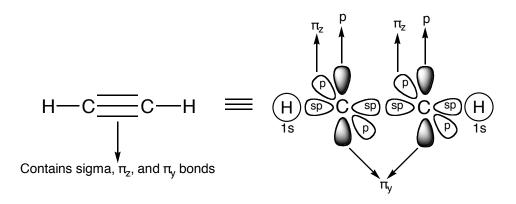

1

- When atomic orbitals overlap they form molecular orbitals.
- Double bond contains one σ bond and one π bond.
- σ bond has free rotation.
- π bond fixes geometry, does not allow for around the double bond.

sp Hybridization

- Triple bonds
- Linear geometry
- No free rotation around triple bonds

Triple bond:


One sigma bond between the $H \longrightarrow C \longrightarrow C \longrightarrow H$ carbons plus two pi bonds formed through p_y and p_z acetylene = ethyne

sp Hybridization

- Triple bonds
- Linear geometry
- No free rotation around triple bonds
- Angle between two atoms: 180°

$$\begin{array}{c|ccc}
E & C_A & C_A \\
2p & & \downarrow & \downarrow \\
H & C_A \\
sp & & \downarrow & \downarrow \\
1s & & \downarrow & \downarrow
\end{array}$$

e.g.) Acetylene/Ethyne

