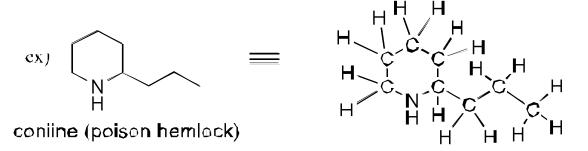
CHEM 261 Sept 12, 2014

Representation of Molecules


- Show only electrons in outer (valence) shell
- Non-bonding electrons may not be shown
- Use element symbols, but carbon can be represented by point of angle or end of line
- Hydrogens and bonds to them from carbon are optional, show others

ex) C₃H₆ (propene)

Ex) Tetrahydrofuran (THF)

$$\begin{array}{c} \bigcirc \\ \bigcirc \\ \text{Chemical Formula: C}_4 \\ \text{H}_8 \\ \text{O} \end{array} \implies \text{in 3D} \quad \Longrightarrow \quad \begin{array}{c} \bigcirc \\ \\ \bigcirc \\ \end{array}$$

Molecular Weight: 72.1070

E.g. Cholesterol:

Chemical Formula: C₂₇H₄₆O Molecular Weight: 386.6640

1

Formal Charge

- Convention to keep track of charges
- \sum (sum of) of formal charges = charge on molecule

Rules

- Add number of protons in nucleus
- Subtract number of inner shell electrons
- Subtract number of unshared electrons
- Subtract ½ of the number of shared outer shell electrons

E.g.

1. Sodium Nitrate – NaNO₃

Double bonded oxygen:

+8 (number of protons)

-2 (1s electrons)

-4 (unshared electrons) $\frac{1}{2} \times 4 = \frac{-2}{0}$ (1/2 of shared electrons)

Single bonded oxygen (both):

+8 (number of protons)

-2 (1s electrons)

-6 (unshared electrons)

 $\frac{1}{2}$ x 2 = -1 (1/2 of shared electrons)

Formal Charge on Nitrogen:

+7 (number of protons)

-2 (1s electrons)

0 (unshared electrons)

 $\frac{1}{2} \times 8 = -4$ (1/2 of shared electrons)

2. Methane:

Formal Charge on Carbon:

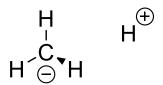
+6 (number of proton)

-2 (1s electron)

0 (unshared electrons)

 $\frac{1}{2} \times 8 = \frac{-4}{0}$ (1/2 of shared electrons)

Formal charge on Hydrogen:


+1 (number of proton)

0 (inner shell electron)

0 (unshared electrons)

 $\frac{1}{2}$ x 2 = -1 (1/2 of shared electrons)

3) Methyl Anion/Carbanion:

Formal Charge on Carbon:

+6 (number of proton)

-2 (1s electron)

-2 (unshared electrons)

 $\frac{1}{2} \times 6 = -3$ (1/2 of shared electrons)

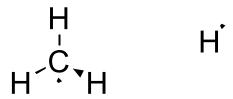
Formal charge on Bonded Hydrogen:

+1 (number of proton)

0 (inner shell electron)

0 (unshared electrons) $\frac{1}{2} \times 2 = \frac{1}{0} (1/2 \text{ of shared electrons)}$

Formal charge on H⁺:

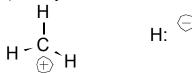

+1 (number of proton)

0 (inner shell electron)

0 (unshared electrons)

 $\frac{1}{2} \times 0 = 0$ (1/2 of shared electrons)

4) Methyl Radical:



Formal Charge on Carbon: +6 (number of proton) -2 (1s electron) -1 (unshared electrons) $\frac{1}{2} \times 6 = -3$ (1/2 of shared electrons) Formal charge on Hydrogen: +1 (number of proton) 0 (inner shell electron) 0 (unshared electrons) $\frac{1}{2} \times 2 = -1$ (1/2 of shared electrons)

Formal charge on H :

+1 (number of proton) 0 (inner shell electron) -1 (unshared electrons) $\frac{1}{2} \times 0 = \frac{0}{0} (1/2 \text{ of shared electrons})$

5) Methyl Cation:

Formal charge on Carbon

- +6 (number of protons)
- -2 (inner shell e-)
- -3 (1/2 shared e-)

+1

s)

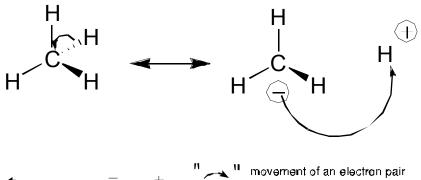
Formal Charge on H:

+1 (number of protons)

0 (inner shell electron)

-2 (unshared electrons)

 $\frac{1}{2} \times 0 = 0$ (1/2 of shared e-


0

Resonance:

- move the electrons, keeping the position of atoms same → gives different picture of same molecule
- maintain inert gas configuration around each atom
- avoid separation of charges
- avoid like-charges on adjacent atoms

Eg. Methane:

- they are all resonance forms but not necessarily good pictures (significant representations of actual structure
- CH₄ is the best resonance form
- Double headed arrow (◆→) is used indicate resonance forms

Resonance structure example:

1. nitrate anion (NO₃⁻)

^{*} this is called "arrow pushing" → bookkeeping of electrons