CHEM 261 Oct. 9, 2015

Physical Properties of Alkyl Halides:

- Governed primarily by dipole-dipole interactions. "Non-polar", but more polar than hydrocarbons.
- High MP and BP relative to hydrocarbons of similar molecular weight
- Good solvents for organic compounds e.g. Methylene chloride (CH₂Cl₂) and chloroform (CHCl₃)
- Density = ρ (rho) = 1.0 g/cm³ for water
- If % composition > 65% halogen by weight, then more dense than water ($\rho > 1.0$)
- Immiscible (insoluble) in H₂O. H₂O floats on top.

Example: Halothane

Example: Refrigerants

How would you synthesize Freon 11? Fluorinate or chlorinate first? You would chlorinate first. Fluorine is more reactive and it would be difficult to get monofluorinated products.

Another Example:

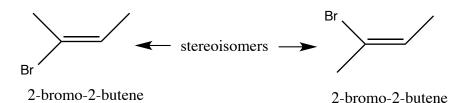
1,1-dibromo-2-chloroethane

Male contraceptive – Sperm count for a healthy male is typically 100 million per mL. This compound can reduce that to 0.

ALKENES AND ALKYNE NOMENCLATURE

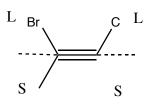
$$C=C$$
 $-C\equiv C-$

Alkene (olefin) Alkyne (acetylene)


- sp² hybridized - 120°, planar - 180°, linear
- Alkenes Structure and Nomenclature

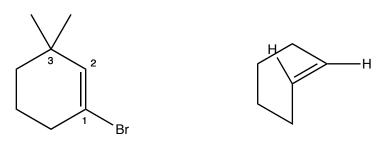
- H₃C₂ H C=C¹ propylene (common name) H H or propene(systematic name)
- to name find longest chain containing maximum number of C=C with both multiply bonded carbons in chain
- number from end to give 1st carbon of C=C lowest number, prefix with number to indicate position of first double bonded carbon

Stereoisomers (Diastereomers)


- cis = two large groups on same sidetrans = two large groups on opposite side
- These 2-butenes are structural isomers with respect to the 1-butene above

Another example:

E-Z Nomenclature


Large groups are on opposite sides on the C=C \rightarrow E E-2-bromo-2-butene

Z-2-bromo-2-butene

$$H_3C$$
 CH_3 Br CH_2 H_2C F

Z-1-bromo-2,3-dimethyl-4-fluoro-2-butene

1-bromo-3,3-dimethyl-1-cyclohexene

unstable

"E" though in small rings, double bonds are always cis with respect to the ring atoms.