CHEM 261 Oct. 05, 2015

Reactions of alkanes: Two will be considered

1) Combustion:

R = any alkyl group

e.g. propane

$$CH_3CH_2CH_3$$
 $5O_2$ \longrightarrow $3CO_2 + 4H_2O$

2) Halogenation of alkanes

$$R-H + X_2 \longrightarrow R-X + HX$$

R = any alkyl group, R-X = alkyl halide / haloalkane (X = Cl, Br, F); F_2 is the most reactive and I_2 fails to react.

In this course, we will be focused on chlorination and bromation.

Substitution reaction (via radicals) – Substitute H with X

e.g. Chlorination of methane

CH₄ + Cl₂
$$\xrightarrow{h\upsilon}$$
 CH₃Cl + HCl methane methyl chloride chloromethane

light energy, $E = h\upsilon$ h = Planck's constant 6.6 x10⁻³⁴ joules-sec $\upsilon = frequency of light$

Mechanism of reaction:

- Step by step description of a reaction process (hypothetical and difficult to "prove")

Two kinds of mechanism

1. Homolytic (radical): One electron goes to each atom once the bond in broken. e.g. Free radical halogenation of alkanes

$$A = A$$

2. Heterolytic (polar rxns): The electron pair goes to one of the atoms once the bond is broken. e.g. Addition reactions of alkenes; elimination reactions

$$A - B \longrightarrow A \longrightarrow B$$

Homolytic reactions are less common than heterolytic reactions

- Initiated by heat (Δ) or by light ($h\nu$)

Mechanism of halogenation of CH₄:

$$CH_{4} + X_{2} \xrightarrow{h\upsilon} CH_{3}X + HX$$

$$: \ddot{C}l \xrightarrow{C} \ddot{C}l : \xrightarrow{\Delta} 2 : \ddot{C}l \cdot \text{ initiation step}$$

$$: \ddot{C}l \cdot + H \xrightarrow{C}CH_{3} \longrightarrow H \ddot{C}l : + \cdot CH_{3}$$

$$= \text{ a methyl radical }$$

$$CH_{3} + : \ddot{C}l \xrightarrow{C} \ddot{C}l : \longrightarrow CH_{3}Cl + : \ddot{C}l \cdot$$

$$: \ddot{C}l \cdot + : \ddot{C}l \cdot \longrightarrow Cl_{2}$$

$$: \ddot{C}l \cdot + : \dot{C}H_{3} \longrightarrow CH_{3}CH_{3}$$

$$: \ddot{C}l \cdot + \cdot CH_{3} \longrightarrow CH_{3}Cl$$

$$\text{termination steps}$$

$$: \ddot{C}l \cdot + \cdot CH_{3} \longrightarrow CH_{3}Cl$$

Propagation is the main step within the process. The termination step is the combination of radicals and is quite rare during the progress of the reaction.

Note: The above mechanism also applies to other halogens (F, Cl, Br; not I)

Further examples

1. Cyclohexane

2. Methylcyclohexane

- Different types of hydrogen can be pull from a methylcyclohexane in a radical halogenation reaction to give various products. However, just one main product is obtained. This is explained in terms of the stability of the radical formed during the reaction process.

Stability of radicals:

- Stability increases with alkyl substitution
- Alkyl groups are polarizable and donate electrons to electron deficient sites better than hydrogens (this is called inductive effect and occurs through sigma bonds)

$${}^{\cdot}CH_3$$
 < ${}^{\cdot}CH_2R$ < ${}^{\cdot}CHR_2$ < ${}^{\cdot}CR_3$
methyl primary (1°) secondary (2°) tertiary (3°) radical radical (least stable) (most stable)