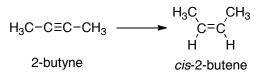
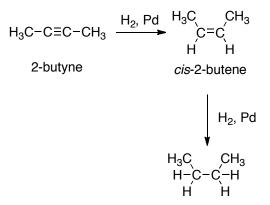

Reactions of Alkynes


1. Addition (analogous to alkenes)


2. At terminal carbon bearing H

Addition reactions

1. Hydrogenation

 H_2 and catalyst. However, a less reactive catalyst is needed to stop reaction at the cis-2butene product.

Lindlar's Catalyst:

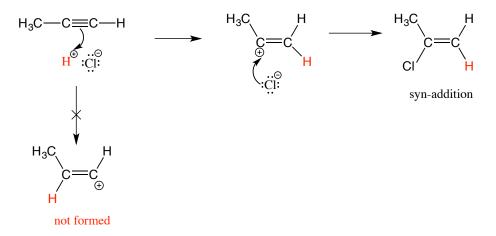
Pd, BaSO₄ (or CaCO₃ is often used in place of BaSO₄), and quinoline (see below):

> These conditions allows for selective hydrogenation of alkynes to alkenes.

2. Halogenation

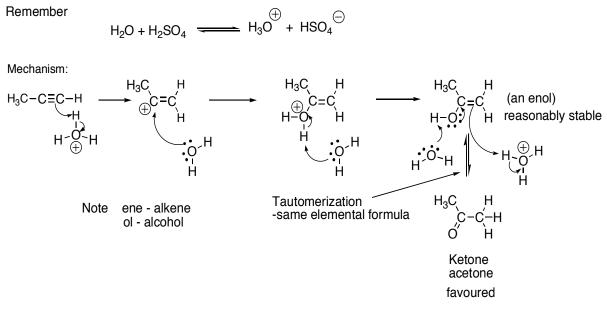
- The halogenation reaction gives a trans addition (anti)

$$H_{3}C-C\equiv C-CH_{3} \xrightarrow{Br_{2}} \xrightarrow{Br} C=C \xrightarrow{CH_{3}} \xrightarrow{Br_{2} (excess)} H_{3}C \xrightarrow{Br} H_{3}C \xrightarrow{Pr} C=C \xrightarrow{Pr} C+C \xrightarrow{Pr}$$

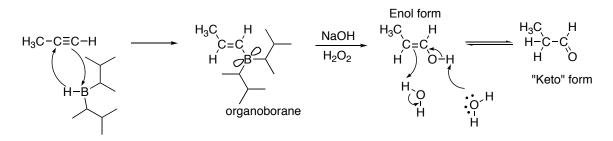

3. HX Addition (syn)

X= Cl, Br, I

$$H_3C-C\equiv C-CH_3 \xrightarrow{syn} H_3C \xrightarrow{CH_3} C=C \xrightarrow{H-X}$$


Mechanism

Example: Addition of HCl to propyne (follows Markovnikov's rule)



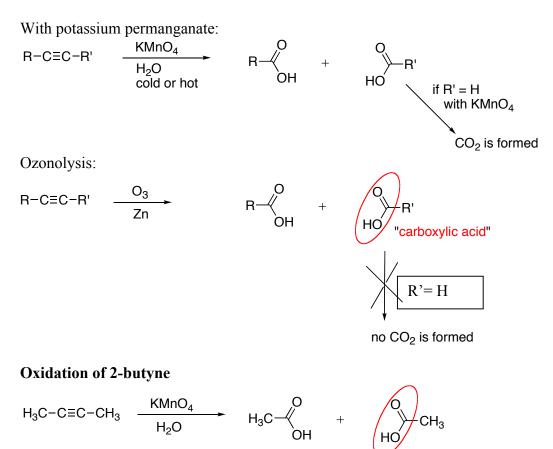
4. Addition of Water (requires acid)

Tautomers (e.g. keto/enol) are rapidly equilibrating structural isomers. The process is called **tautomerization**. Tautomerization is **NOT** the same as resonance. Resonance is the movement of electrons only.

5. Anti-Markovnikov Water Addition - Hydroboration-Oxidation

> Two possibilities for the reaction of organoboranes:

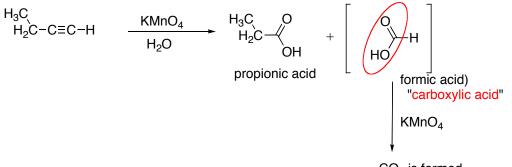
- 1. Water and acid to add H and give the alkene
 - 2. NaOH and H₂O₂ to give the enol tautomer that converts (equilibrium) primarily to the keto tautomer (aldehyde shown below)


$$H_{3}C-C\equiv C-H \xrightarrow{1) R_{2}BH} H_{3}C-C\equiv C-H \xrightarrow{1) R_{2}BH} OH$$

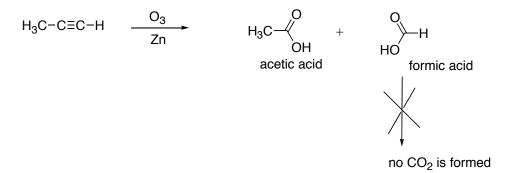
$$HOOH OH OH$$

$$HOOH OH$$

$$H_{2}OH$$


Oxidation of Alkynes

acetic acid (vinegar) "carboxylic acid"


The same products are obtained by: 1) O₃ then 2) Zn

Oxidation of 1-butyne

CO₂ is formed

Ozonolysis of propyne

Acidity of Alkanes / Alkenes / Alkynes:

$$\begin{array}{c} \overset{\oplus}{\delta} \delta^{\oplus} \\ \mathsf{R} \overset{\bigoplus}{=} \mathsf{H} \\ \overset{\oplus}{\delta^{\ominus}} \end{array}$$

:
$$NH_3$$
 \longrightarrow : NH_2^{\odot} + H^{\odot}
ammonia $pKa = 36$

$$H-O-H \longrightarrow H-O: + H$$

 $H-O-H \longrightarrow H-O: + H$

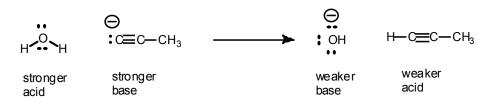
Ethane / Ethene / Ethyne

 $\frac{\text{Ethane}}{H_2} \xrightarrow{H_2} H_3C - \overrightarrow{CH_2} + \overrightarrow{H^+}$ $Ka = \frac{[CH_3CH_2^-][\overrightarrow{H^+}]}{[CH_3CH_3]} = 10^{-46}$ pKa = 46

$$\underbrace{Ethene (ethylene)}_{H_2C=CH} + H_2C=CH + H^{\oplus}$$

Ka =
$$\frac{[CH_2CH^-][H^+]}{[CH_2CH_2]}$$
 = 10⁻³⁶

Ethyne (acetylene)


$$Ka = \frac{[HC \equiv C] [H^+]}{[HC \equiv CH]} = 10^{-26}$$

pKa = 26

How strong of a base is needed to deprotonate?

	acid	conjugate base
HC≡C−H pKa = 26	H ₂ N-H pKa ~ 36	H₂N⁻
	Н ₃ С-Н рКа ~ 45	H ₃ C ⁻
	HO-H pKa ~ 15.7	HO ⁻

• H₂N⁻ and H₃C⁻ are strong enough bases to deprotonate a terminal alkyne, but water is not a strong enough.

