REVIEW:

Conformations – different shapes a single molecule may assume via rotation around single bonds

Isomers - different compounds with same molecular formula – 2 basic types 1. Structural/constitutional isomers

- compounds with same molecular formula
- 2. Stereoisomers same connectivity but different 3-D structure 2 sub-types
 - (a) diastereomers/diastereoisomers (eg. cis/trans)
 - (b) enantiomers (non-superposable mirror images of same molecule)

Example 1

1,1-dimethylcyclohexane

The below are all equally valid representations

- 4-

Example 2

Steps for drawing

Note on drawing the most stable conformation of substituted cyclohexanes:

- generally, draw chair conformation of cyclohexane
- put the largest group in equatorial position
- draw the next group on the correct side (face) with respect to the largest group

Reactions of alkanes: two will be considered

1) Combustion – already discussed heat O_2 \rightarrow R-H H_2O + CO_2 + R=Any alkyl group 2) Halogenation of alkanes Light (hv) R-H X_2 \rightarrow R-X HX ++R= any alkane (group), R-X = alkyl halide / haloalkane (X=Cl, Br, F) ; I₂ fails

substitution reaction – substitute H with X

Mechanism of reaction:

- step by step description of what happens during a reaction (hypothesis) Two kinds of mechanism-

1. homolytic : (one electron to each atom connected by a bond) radical rxn eg. halogenation of alkanes.

2. heterolytic : (both electrons in bond go to one atom) eg. addition reactions of alkenes, elimination reactions.

Homolytic reactions (less common than heterolytic reactions) - initiated by heat (Δ) or by light (hv)

Mechanism of halogenation of CH₄:

 $CH_4 + X_2 \xrightarrow{hv} CH_3X + HX$ X = F, Cl, Br

$$: \ddot{C}I \xrightarrow{\Delta} CH_{3} \leftrightarrow CH_{3} \longrightarrow CH_{3}CH_{3} \rightarrow CH_{3}CH_{3}$$
initiation steps
$$: \ddot{C}I \xrightarrow{\Delta} P \xrightarrow{\Delta} 2: \ddot{C}I \xrightarrow{D} P \xrightarrow{D}$$

Note: above mechanism applies to other halogens (F, Cl, Br)

Further examples -

2,2,4-trimethylpentane

Stability of radicals:

Increases with alkyl substitution.

Alkyl groups are polarizable and donate electrons to electron deficient sites better than hydrogens.

·CH ₃ <	·CH ₂ R	<	·CHR ₂ <	·CR ₃
methyl	primary		secondary	tertiary
radical	radical		radical	radical
(least stable)				(most stable)

Further Examples

major product