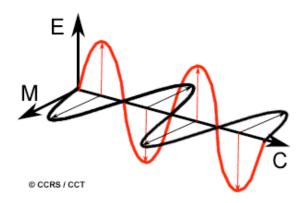

## Physical properties of enantiomers

- Same physical properties in achiral agents
  - Melting point, boiling point, solubility in achiral solvents
- Enantiomers behave differently with chiral agents
  - Example: L & D-carvone have different smells (spearmint and caraway, respectively)

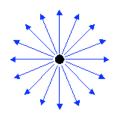




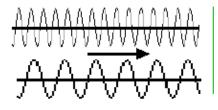
**Optical Rotation** 


- rotation of plane of polarized light
  - dextrorotatory (right)
  - levorotatory (left)
- enantiomers show equal but opposite rotation

Light: Electromagnetic radiation


Light 
$$\rightarrow E = hv = \frac{hc}{\lambda}$$
  
 $v = \text{frequency}$   $E = \text{energy}$   $h = \text{Pla}$   
 $c = \text{speed of light}$ 

Planck's constant


 $\lambda$  = wavelength

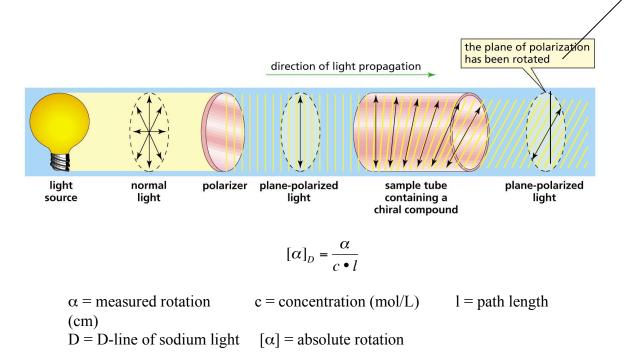


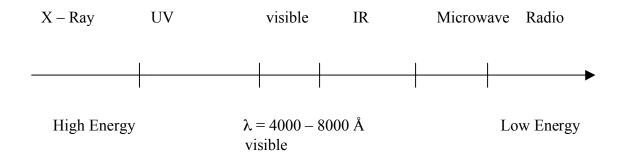
Light has oscillating Electric field (red) combined with magnetic field (black)



End on view of vector components of normal light



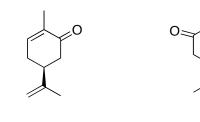

short wavelength = high frequency


High energy

Low energy

long wavelength = short frequency

The plane has been rotated by  $\alpha$  degree to get the maximum transmission






## **Optical Rotation**

 $[\alpha]_D$  = Absolute Rotation

Pure enantiomers rotate in equal but opposite direction



 $[\alpha]_D = +100$ Dextrorotatory d  $[\alpha]_D = -100$ Levorotatory 1

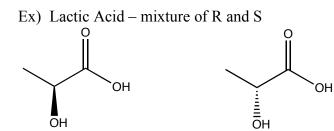
| <u>Optical Purity</u> = enantiomeric excess |          |  |  |  |
|---------------------------------------------|----------|--|--|--|
| _▲                                          | <b>≜</b> |  |  |  |
|                                             | I        |  |  |  |
|                                             |          |  |  |  |

Measured Reality

excess of one enantiomer over the other

Eg.Assume pure enantiomer has  $100^{\circ}$  rotation (pure R isomer =  $-100^{\circ}$ ; S isomer =  $+100^{\circ}$ )

| R    | S    | Rotation (°) | Optical purity |
|------|------|--------------|----------------|
| 100% | 0%   | -100         | 100%           |
| 75%  | 25%  | -50          | 50%            |
| 50%  | 50%  | 0            | 0%             |
| 25%  | 75%  | +50          | 50%            |
| 0%   | 100% | +100         | 100%           |


Racemic Mixture = Racemate

50 : 50 mixture of enantiomers  $[\alpha]_D = 0$ 

Optical purity =  $\frac{[\alpha]_{observed}}{[\alpha]_{pure-enantiomer}} \ge 100\%$ 

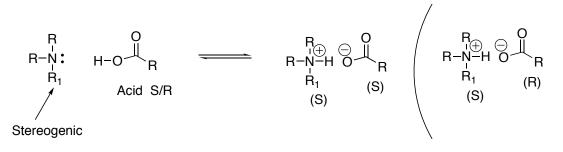
Resolution: Separation of enantiomers.

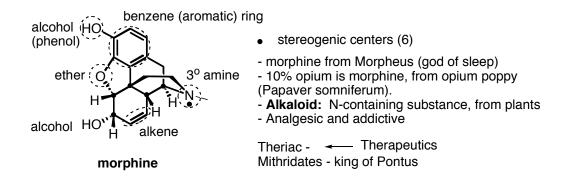
- Always need chiral agents
- Physical separation (crystallization of specific enantiomer)
- "reaction" with chiral substance to get 2 diastereomers, which can be separated.



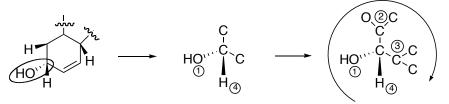
(S) - Lactic acid

(R) - Lactic acid


Resolution by reaction to diastereomers (these can be separated by conventional means)


RACEMATE

Acid<sub>RR</sub> + Acid<sub>SS</sub> 50/50 mix reaction (S-enatiomer - optically pure reactant) Reactant(S) - Acid<sub>RR</sub> Reactant(S)- Acid<sub>SS</sub> S R R S S S


diastereomers

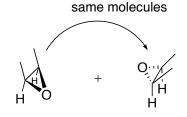
Formation of Diastereomer Salts



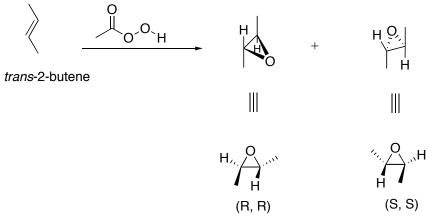


Assign R/S stereochemistry to stereogenic centre




CW rotation (but H is up) = S-configuration

Stereospecific addition reaction: (see reactions of alkenes)


Eg. Epoxidation:

о́<sup>,0</sup>`н

cis-2-butene



achiral - meso compounds (plane of symmetry)



- both starting materials are achiral (not chiral), but each of the products can be chiral - however they are formed as a 1:1 mixture of enantiomers – racemic mixture Generally get pure (or partially pure) chiral products only if one of the reagents is chiral