Recall: A molecular <u>conformation</u> is any spatial arrangement of atoms that can be interconverted by rotation about single bonds of the molecule.

Rotation around all bonds still very rapid.

Most stable (most populated conformation) is called anti and has groups as far away as possible. **Note:** Newman Projection allows you to look at only one bond at a time. In the case of n-butane, we are looking through the central bond.

Cyclohexane molecules usually prefer to exist as chair conformations. Steric strain drives the lowest energy conformation.

Ex 1)

$$= + + = +$$

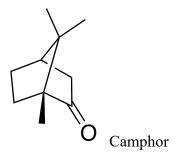
Ex 2)

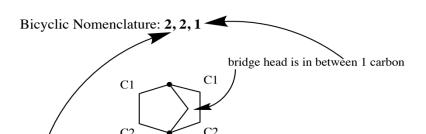
Ex 3)

$$\bigcirc \mathsf{OH} \qquad \longrightarrow \qquad \mathsf{H} \qquad \longrightarrow \qquad \mathsf{OH}$$

Lowest energy conformation

Ex 4)

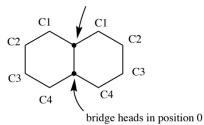

Examples of Basic Bicyclic Compounds:

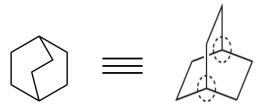

trans-Decalin: (C₁₀H₁₈)

$$\begin{array}{c} 2 \text{ carbon bridge} \\ \\ 2 \text{ carbon bridge} \\ \\ \\ norbornane \\ \\ C_7H_{12} \\ \\ Degrees of unsaturation: 2 \\ \end{array}$$

You are not responsible for nomenclature of bridged bicyclic compounds described below, but you should know norbornane and decalin structures above

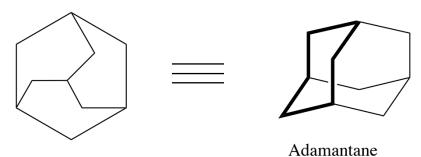
Examples with norbonane moeity

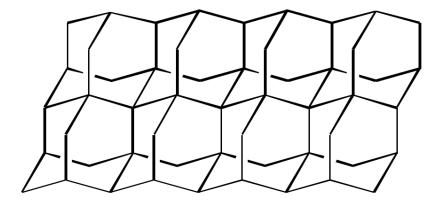




there are two sets of two carbons (C1, C2) on both sides of the bridge head, hence, 2,2

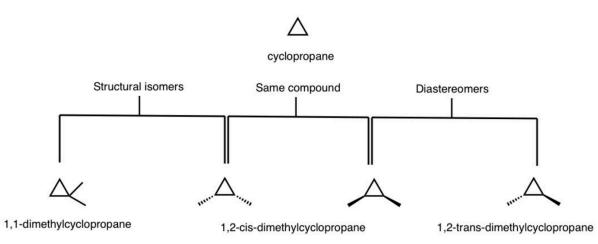
Bicyclic Nomenclature: 4, 4, 0


bridge heads in position 0


2,2,2-Bicyclooctane

A tricyclic compound:

- This will be the basic structure of diamond


Diamond:

Steroids:

$$\begin{array}{c|c} & & & \\ & & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \end{array}$$

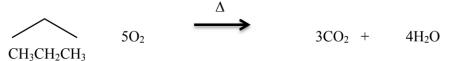
Cyclopropane

When naming the compounds above, it is necessary to describe the location of the two methyl groups even if they are located on the same substituent because all of these are dimethylcyclopropanes (i.e. from left to right: 1,1-dimethyl-, 1,2-cis-dimethyl-, 1,2-transdimethyl- cylcopropane).

October 3, 2024

Reactions of alkanes

1) Combustion:


R-H +
$$O_2$$
 $\stackrel{\Delta=\mathbf{heat}}{\longrightarrow}$ CO_2 + H_2O

R = any alkyl group

General formula for combustion reactions:

$$C_nH_{2n+2} + (\frac{3n}{2} + \frac{1}{2}) O_2$$
 $(n+1) H_2O + n CO_2$

e.g. propane

2) Halogenation (Radical substitution reaction)

*Know these halogens: F, Cl, Br, I → these are diatomic

$$R-H + X_2 \longrightarrow R-X + HX$$

R = any alkyl group, R-X = alkyl halide / haloalkane

X = halogen

$$F_2$$
 (most reactive) $> Cl_2 > Br_2 >> I_2$ (does not react)

 $h = Planck's constant 6.6 \times 10^{-34} joules-sec$

v = frequency of light

E = hv, are the symbols we use to describe light energy

In this course, we will focus on chlorination and bromination.

Substitution reaction (via <u>radicals</u>) – Substitute H with X

e.g. Chlorination of methane

Mechanism of reaction:

- Step by step description (proposal) of a reaction process (hypothetical and difficult to "prove")

Two kinds of mechanism

1. Homolytic (radical): One electron goes to each atom once the bond in broken. e.g. Free radical halogenation of alkanes

The red half arrows (single hook arrow) above describe the movement of one electron, full arrows describe movement of lone pairs.

2. Heterolytic (polar reaction): The electron pair goes to one of the atoms once the bond is broken. e.g. Addition reactions of alkenes; elimination reactions

$$A \stackrel{\frown}{-} B \longrightarrow A^{\oplus} : B^{\ominus}$$

Homolytic reactions are less common than heterolytic reactions

- Initiated by heat (Δ) or by light (hv)

Mechanism of halogenation of CH₄:

$$CH_{4} + X_{2} \xrightarrow{h\upsilon} CH_{3}X + HX$$

$$: \ddot{C}l \xrightarrow{\dot{C}} \ddot{C}l : \xrightarrow{\Delta} 2 : \ddot{C}l \cdot \text{ initiation step}$$

$$: \ddot{C}l \cdot + H \xrightarrow{\dot{C}} CH_{3} \longrightarrow H \ddot{C}l : + \cdot CH_{3}$$

$$= \text{a methyl radical}$$

$$: \ddot{C}l \cdot + : \ddot{C}l \cdot \ddot{C}l : \longrightarrow CH_{3}Cl + : \ddot{C}l \cdot$$

$$: \ddot{C}l \cdot + : \ddot{C}l \cdot \longrightarrow Cl_{2}$$

$$: \ddot{C}l \cdot + : \dot{C}H_{3} \longrightarrow CH_{3}CH_{3}$$

Propagation is the main step within the process. The **termination** step is the combination of radicals and is quite rare during the progress of the reaction, yet any one of the three listed can occur to terminate the reaction.

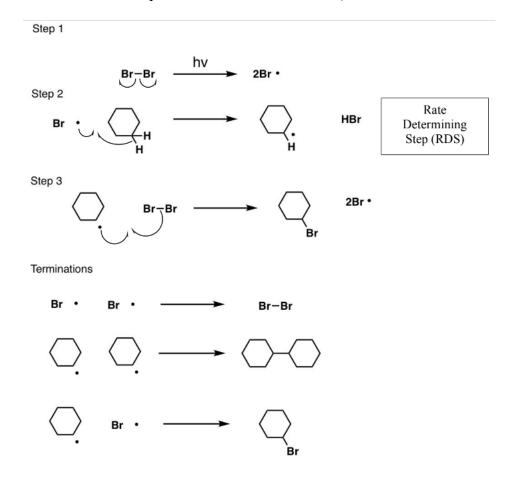
Note: The above mechanism also applies to other halogens (F, Cl, Br; not I)

Example: Ethane (analogous)

^{*}You should be able to identify if the products have a net dipole

Eg. Bromination of ethane

$$Br_{2} + H_{3}CCH_{3} \xrightarrow{hv}$$


$$CH_{2}CH_{3} \xrightarrow{hv}$$

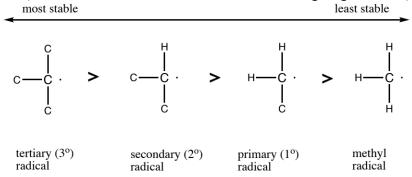
$$Br \cdot Br \cdot Br \cdot Br \cdot Br \cdot Br \cdot CH_{2}CH_{3}$$

$$Br - Br \cdot CH_{2}CH_{3} \xrightarrow{BrCH_{2}CH_{3} + Br}$$

Example: Bromination of cyclohexane

(Step 1 is **initiation**, steps 2 and 3 are **propagation** steps that are the main process. Other steps are **termination** steps that shut down the reaction)

October 3, 2024


Example: Chlorination of 2,2,4-trimethylpentane

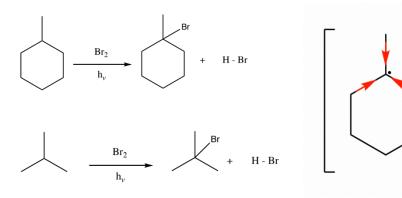
Note: Different types of hydrogen can be pulled from a 2,2,4-trimethylpentane in a radical halogenation reaction to give various products. However, one main product is obtained. This is explained in terms of the stability of the radical formed during the reaction process.

11

Stability of radicals:

- Stability increases with alkyl substitution
- Alkyl groups are polarizable and donate electrons to electron deficient sites better than hydrogens (this is called **inductive effect** and occurs through sigma bonds)

Or it can be summarized from least to most stable radicals:


$${}^{\cdot}\mathrm{CH}_3 < {}^{\cdot}\mathrm{CH}_2\mathrm{R} < {}^{\cdot}\mathrm{CHR}_2 < {}^{\cdot}\mathrm{CR}_3$$

methyl primary (1°) secondary (2°) tertiary (3°) radical radical radical (least stable) (most stable)

Example: Methylcyclohexane

The reaction can utilize either heat (Δ) or light (hv)

Other Examples: Alkyl Groups Donate electrons and stabilize

Intermediate Radical
is NOT a transition state

More Examples

A. 1,1,3-trimethylcyclopentane bromination

B.

C.

$$Br_2$$
 hv
 Br
 $+$ HBr
 $major\ product$