CHEM 261 Oct 18, 2022

Recall the following about substitution reactions:

Never leaving groups: (negative charge not stabilized):

$$\mathsf{F}^{\bigcirc}$$
 $\overset{\bigcirc}{\mathsf{OH}}$ $\overset{\bigcirc}{\mathsf{OR}}$ $\overset{\bigcirc}{\mathsf{NR}_2}$ $\mathsf{R}^{\bigcirc}_{:}$

Fluorine, though electronegative, is a bad leaving groups as it is small and poorly solvated.

Good leaving groups

$$O \rightarrow S \rightarrow R \rightarrow I \rightarrow Br \rightarrow Cl \rightarrow F \rightarrow F$$

-OH or -OR can also act as leaving groups but they must first be transformed into H₂O or HOR by a strong acid

Characteristics of S_N 2 reactions:

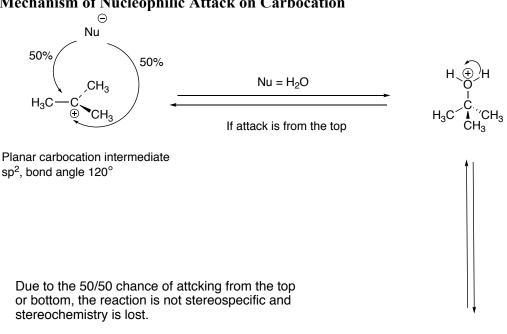
- Concerted
- Stereospeific
- Rate dependent on the concentration of nucleophile and substrate
- Works for 1° and 2° but not 3°

Characteristics of S_N1 reactions:

- Stepwise
- Carbocation intermediates
- Rate dependent on concentration of substrate
- Not stereospecific
- Favoured by heat or acid
- Works for 3° and sometimes 2° but never 1°

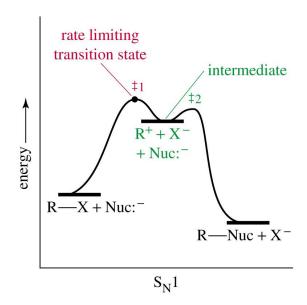
Example: Tertiary Halide

-No S_N2 possible, sterically crowded – does work by S_N1


Mechanism:

The bromine group leaves with its electrons from the covalent bond, leaving behind a reactive carbocation intermediate

intermediate


Carbocation intermediate is planar, so the nucleophile can attack from the top or bottom

Mechanism of Nucleophilic Attack on Carbocation

sp³, tetrahedral, bond angle 109°

Energy level diagram of $S_N \mathbf{1}$

Carbocation Stability:

Tertiary	Secondary	Primary	Methyl Cation
CH ₃ H ₃ C−C⊕ CH ₃	H > H ₃ C−C⊕ > CH ₃	H H−C⊕ CH ₃	H − C ⊕ H
Most stable			Least stable (no S _N 1)

The 3 alkyl groups donate e⁻ density into the positive charge

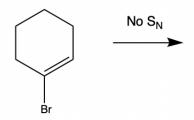
REVIEW: S_N yes or no? Examples

Ex #1) Will NOT proceed - no S_N

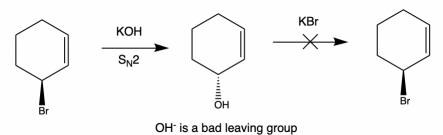
Note: alkyl groups stabilize carbocation intermediate by donating a negative charge Note: will undergo elimination reaction (explanation of what this is comes later)

Ex #2)

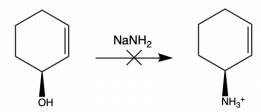
OH is never a good leaving group


Ex #2a) Works with Acid

Mechanism:

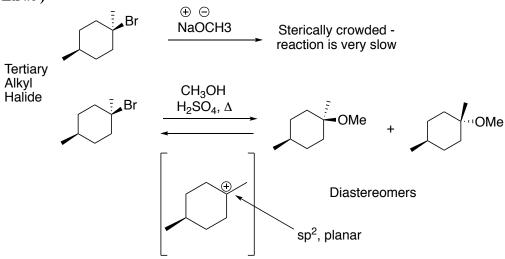

Ex #3)

Note: a carbon attached to a double bond cannot undergo a substitution reaction


Ex #4)

Ex #5)

Ex #6) Will not work


Note: these reagents will undergo an acid/base reaction rather than a substitution

Ex #7) will not work

Note: OCH₃ is a BAD leaving group

Ex #8)

Ex #9)

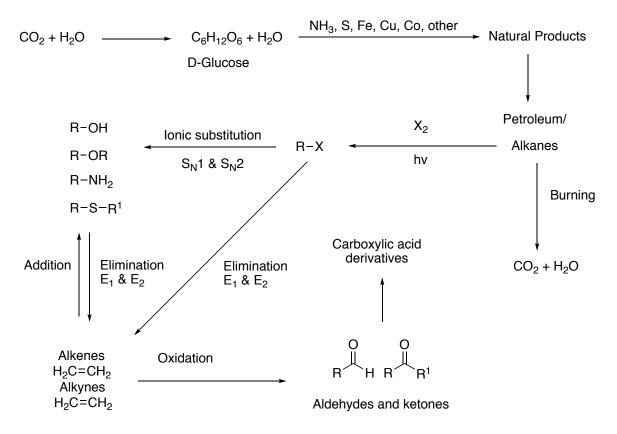
Note: the products are achiral

Extra examples:

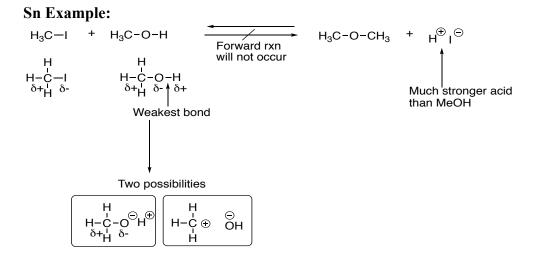
Ex #1)

Ex #2) This one can work in principle

$$S_{N2}$$
 + S_{N2} +


2-Bromobutane

Ex #3) The one below does NOT work


 $\overset{\bigcirc}{\rm OH},\overset{\bigcirc}{\rm OR},\overset{\bigcirc}{\rm NR_2}$ are never good leaving groups

In this reaction, the NH_2 species will pull off the most acidic proton (the one on the alcohol) to from an **alkoxide** instead of undergoing an S_N2 reaction,

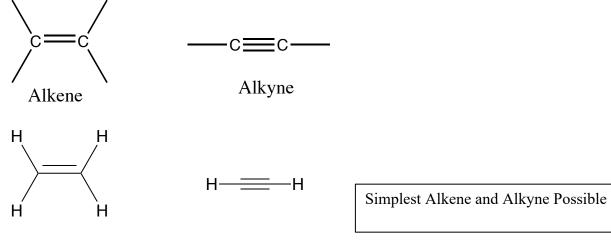
Photosynthesis and Related Reactions

-Plants consume $4x10^{11}$ metric tons of CO_2 per year and convert it to D-Glucose

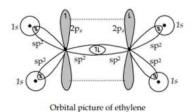
Hydrogen iodide is a strong acid and will drive the reverse reaction, meaning the forward reaction will not occur.

In order to make the above reaction occur, a stronger base (such as sodium methoxide) must be used to drive the forward reaction.

Example:


The above reaction will not occur unless hydrogen cyanide is converted into sodium cyanide using NaOH.

The product is acetonitrile, a common laboratory solvent.


Alkene and Alkyne Nomenclature

Alkene = double bond = olefin (oleum facere = to make oil)

Alkyne = triple bond = acetylene (as functional group, not compound)

Ethylene Acetylene

Alkene Nomenclature

Find longest chain, number from end to contain both ends of C=C and give lowest number to 1st C of C=C

Change "ane" to "ene" precede with number to indicate first double bond position

Below are two structural isomers of 1-butene

$$H_3C$$
 $C = C$
 $C = C$