
Chem 261 Fall 2024 October 17, 2024

Substitution Reactions

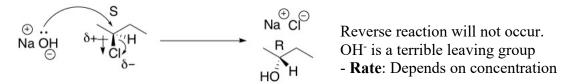
Remember: Radical Substitution

1) Homolytic bond breaking

Note: Although radicals are sp³ hybridized, rapid inversion around the central C results in a loss of stereochemistry. Hence, the resulting product would be a racemic mixture.

2) Heterolytic Bond Breaking (<u>Ionic Substitution</u>)

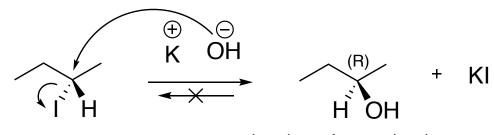
Nucleophile is a substance that seeks positive charge


Types of Nucleophilic Substitution (S_N)

S_N1 - rate depends on 1 concentration

 $S_N 2$ - The rate is dependent on the concentration of the nucleophile and the nucleophile (2 concentrations)

Chem 261 Fall 2024 October 17, 2024

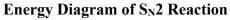

Sn2 Mechanism

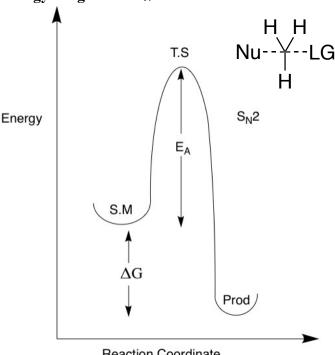
- Inversion of configuration (Walden inversion)
- Concerted: The bonds of the starting material break at the same time as the product bonds form.
- **Stereospecific**: stereochemistry of the starting material determines the stereochemistry of the product.
- Works for CH₃-X, R-CH₂X, R₁R₂CHX.

Another example of mechanism of S_N2 reaction

As such, the reaction below is not reversible:

(S)-2-iodobutane


inverison of stereochemistry


$$HO---C---I$$
 H_3C

S_N2 always inverts stereochemistry

Favored conditions are with less steric bulk, primary best and secondary okay

Chem 261 Fall 2024 October 17, 2024

Reaction Coordinate

There is no intermediate in the $S_{\rm N}2$ reaction, as it is concerted

Good Leaving Groups	Bad Leaving Groups
$RSO_3^- > I^- > Br^- > Cl^- >> F^-$ (due to	H-, R- (alkyl), -NR ₂ , -OR, -OH, F-
solvation)	

HOH, HOR are okay leaving groups, but need to protonate with acid before it can leave

Leaving groups must be connected to a primary or secondary carbon (carbon that has at least one hydrogen, preferably 2)

More examples of reactions that do not proceed via $S_N 2$

$$\begin{array}{c|c}
CI & S_{N2} \\
\hline
CI & S_{N2} \\
\hline
CI & S_{N2} \\
\hline
\end{array}$$

Example:

1)
$$CI \longrightarrow \text{no } S_N 2$$
2)
$$No S_N = \sum_{i=1}^{N} S_i S_i$$

Na^{$$\dagger$$} OH + H₃C O CH₃ Na ^{\dagger} OCH₃ + H₃C OH
Note: Methoxide (CH₃O) and hydroxide (OH) are bad leaving groups

6) Neutral leaving group containing lone pair

$$H_3C-I$$
 + : NH_3 \longrightarrow H_3C-NH_3 + $I^ \downarrow$
 H_3C-NH_2 + H^+

No
$$S_N 2$$

OH + Na^+ CI \longrightarrow CI + NaOH

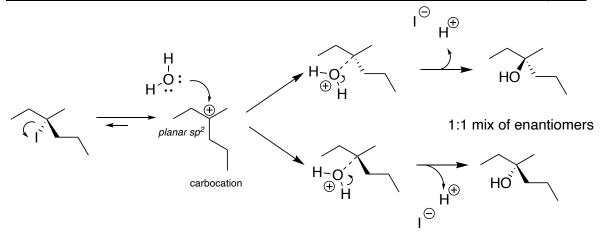
Note: OH is never a leaving group but if you add a strong acid or the reaction happen in a strongly acidic condition (see next example), the reaction will occur

8)

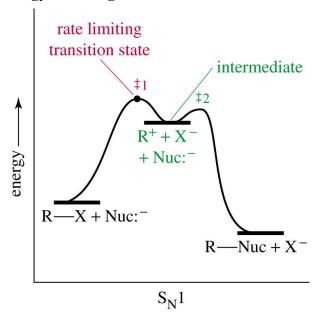
$$\bigcirc$$
OH + Na⁺ CI $\xrightarrow{\text{H}_2\text{SO}_4}$ \bigcirc CI + NaOH

Mechanism:

Note: The leaving group in this reaction is now HOH


9)

Note: Alkoxide (OR) or hydroxide (OH) are bad leaving group therefore no Sn2 reaction will occur on either direction. However, if the reaction happens in strongly acidic condition the reaction will occur. (see mechanism below)


S_N1 Reaction:

Characteristics of S_N1 reactions:

- Stepwise
- Carbocation intermediates
- Rate dependent on concentration of substrate only
- Not stereospecific
- Favoured by heat or acid
- Works for 3° and sometimes 2° but never 1°

Energy level diagram of S_N1

Favored conditions are with stabilized carbocation – more substitution

Carbocation Stability:

Tertiary	Secondary	Primary	Methyl Cation
CH ₃ H ₃ C−C⊕ CH ₃	H > H ₃ C−C⊕ CH ₃	H > H-C⊕ CH ₃	> H-C ⊕ H
Most stable			Least stable (no S _N 1)
The 3 alkyl ground donate e densitive characters	ity into		, ,

Chem 261 Fall 2024 October 17, 2024

Example: Tertiary Halide

-No S_N2 possible, sterically crowded – does work by S_N1

Adding water drives equilibrium forward

(Le Chatelier's Principle)

Rxn is reversible

$$S_N 1$$
 occurs

 $X = Br$

No $S_N 2$

Mechanism of S_N1:

The bromine group leaves (Step 1) with its electrons from the covalent bond, leaving behind a reactive carbocation intermediate

Carbocation intermediate is planar, so the nucleophile can attack from the top or bottom

Carbocation intermediate

Nu
$$= H_2O$$
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3

If attack is from the top

 H_3C
 CH_3

Planar carbocation intermediate sp², bond angle 120°

Due to the 50/50 chance of attcking from the top or bottom, the reaction is not stereospecific and stereochemistry is lost.

sp³, tetrahedral, bond angle 109°

Summary of $S_N 1$ vs $S_N 2$

	$S_N 1$	$S_N 2$
RDS	Unimolecular	Bimolecular
Main barrier	Carbocation stability	Steric bulk
Alkyl halides	3° > 2° >> 1°	1° > 2° >> 3°
Nucleophile	Neutral/weak	Charged/strong
Stereochemistry	Mixture	Inversion

Good leaving groups

-OH or -OR can also act as leaving groups but they must first be transformed into H₂O or HOR by a strong acid

Never leaving groups: (negative charge not stabilized):

$$F^{\bigcirc}$$
 $\stackrel{\bigcirc}{\text{OH}}$ $\stackrel{\bigcirc}{\text{OR}}$ $\stackrel{\bigcirc}{\text{NR}_2}$ $\stackrel{\bigcirc}{\text{R}^{\bigcirc}}$

Fluorine, though electronegative, is a bad leaving group as it is small and poorly solvated.

Leaving group activation:

1) Protonation

Highlights:

- H₂SO₄ is a proton (H⁺) donor.
- OH is transformed into a better leaving group via protonation of the O atom.
- Cl⁻ can then attack via S_N2, kicking off H₂O in the process.

 $S_N 2$ will <u>not</u> occur on carbon sites that have multiple bonds.

Example 1:

$$\xrightarrow{\bigoplus_{\substack{Na\ NH_2\\Br}}} No\ S_N \ reaction$$

Example 2:

Example 3:

$$\begin{array}{c}
\stackrel{\bigoplus \bigcirc}{K} \stackrel{\bigcirc}{\text{NOCH}_3} \\
\text{Br}
\end{array}$$
No S_N reaction

Example 4:

$$\begin{array}{c|c}
& \oplus \ominus \\
\hline
K OCH_3 \\
\hline
S_N 2
\end{array}$$

$$\begin{array}{c}
\text{OCH}_3
\end{array}$$

Example 5:

$$\rightarrow$$
 Br $\xrightarrow{H_2O}$ \rightarrow OH + HBr

Example 6:

Example 7:

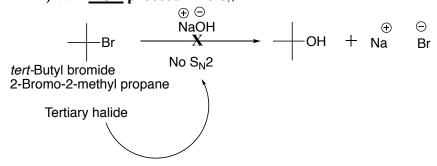
Mechanism:

Example 8:

Example 9:

Example 10:

$$Na$$


$$OC \equiv N$$

$$CH_3 \longrightarrow H_3C - C \equiv N + NaI$$

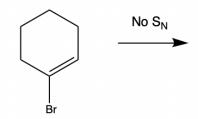
$$S_N 2 \xrightarrow{\text{methyl cyanide or acetonitrile}} Na$$

REVIEW: S_N yes or no? Examples

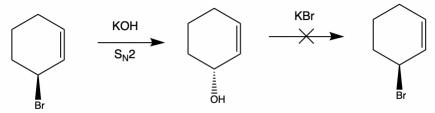
Ex #1) Will NOT proceed - no S_N

Note: alkyl groups stabilize carbocation intermediate by donating a negative charge Note: will undergo elimination reaction (explanation of what this is comes later)

Ex #2)

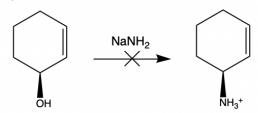

Ex #2a) Works with Acid as S_N1 Mechanism

Mechanism:

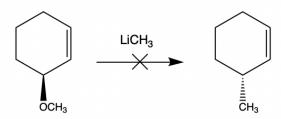

A carbon attached to a double bond cannot undergo a substitution reaction

The carbon with the leaving group must be sp³ to undergo a substitution reaction

Ex #4)

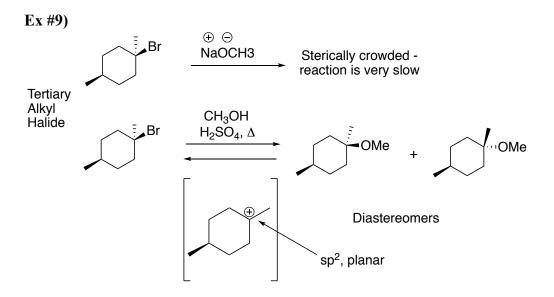

Ex #5)

OH- is a bad leaving group


Inversion of stereochemistry indicates S_N2

Ex #6) Will not work

Note: these reagents will undergo an acid/base reaction rather than a substitution


Ex #7) will not work

⁻OCH₃ is a BAD leaving group

Ex #8)

-OCH₃ is a strong, negatively charged nucleophile, so it favors a S_N2 mechanism

Note: the products are achiral

Extra examples: Ex #1)

Ex #2) This one can work in principle

2-Bromobutane

Ex #3) The one below does NOT work

 \odot OH, OR, NR₂ are never good leaving groups

In this reaction, the NH_2 species will pull off the most acidic proton (the one on the alcohol) to from an **alkoxide** instead of undergoing an S_N2 reaction,