Addition Reactions

Hydrogen Halide (H-X)

$$H_2C=CH_2$$
 $\xrightarrow{X-H}$ $-C-C-C$

Reaction generally leads to syn/cis addition

Example 1: Ethylene

$$H_2C=CH_2$$
 H_2C-CH_2
 H
 Br

Example 2: 1-Methylcyclopent-1-ene

-Markovnikov addition

RECALL: Carbocation stability $3^{\circ} > 2^{\circ} > 1^{\circ} > CH_3^+$

Hydration and ether formation

HO-H or RO-H

Addition
$$R = Alkyl$$

$$C=C \qquad \frac{HO-H(R)}{H^{\oplus}} \qquad -C-C-H \rightarrow H \rightarrow OH(R)$$
(e.g. H_2SO_4)

Not Stereospecific

Examples

Hydration formation

Ex #1)

$$\begin{array}{c}
 & \text{Addition} \\
 & \text{H-OH} \\
 & \text{H}_2\text{SO}_4
\end{array}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}
\end{array}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}
\end{array}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}
\end{array}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}
\end{array}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}
\end{array}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}$$

$$\begin{array}{c}
 & \text{H} \\
 & \text{H}
\end{array}$$

 $H_2SO_4(H^+)$ is a catalyst, meaning that it is not transformed or used up in the reaction but is present to lower the activation energy.

Ether formation

Ex #1)

Ex #2)

Hydroboration

Structure of borane

Exists as Diborane (B₂H₆), but behaves like BH₃

Borane BH₃

Example

Oxidation and reduction reactions

Reduction adds electrons Oxidation removes electrons

Reduction Reaction

$$H_2C=CH_2$$
 $\xrightarrow{H_2}$
 $H_2C=CH_2$
 $\xrightarrow{H_2}$
 $H_1C=CH_2$
 $H_1C=CH_2$
 $H_2C=CH_2$
 $H_1C=CH_2$
 $H_1C=CH_2$

As there is an increase in the electron count in the outer shell, this is a reduction of ethylene.

Ozonolysis (lysis = cleavage)

Examples of carbonyl groups

Reaction scheme of ozone

$$c=c$$
 1.0_3 $c=0$ $0=c$

Example

$$C=CH_2$$
 $\xrightarrow{1. O_3}$ $C=O$ $O=C$ H Acetone Formaldehyde