CHEM 261 Nov 27, 2018

RECALL: Elimination reactions

-OH and -OCH₃ are bad leaving groups and so these reactions would not occur spontaneously without an acid catalyst.

To determine whether an elimination can occur, ask yourself three questions:

$$Br \longrightarrow Br \longrightarrow Br \longrightarrow Br + KBr + HO$$

- 1. Is there a good leaving group present? Eg. Yes, Br is a good leaving group
- 2. Is there a hydrogen on the carbon next to the carbon containing the leaving group? Eg. Yes, on the bridge-heads on either side of the carbon containing the Br.
- 3. Is Bredt's Rule being followed?

 Eg. No, if a double bond was being formed, it would be at a bridge-head and Bredt's rule states that a double bond cannot be formed at a bridge-head if the rings are small and all bridges >0. (double bond too strained)

Substitution would likely not occur either as the electrophilic site is hindered (tertiary carbon).

Addition Reactions

For alternate regiochemistry (addition of Br onto the less substituted carbon) need dialkyl peroxide

$$\longrightarrow \xrightarrow{\mathsf{H}-\mathsf{Br}} \xrightarrow{\mathsf{Br}} \equiv \overset{\mathsf{CH}_3 \; \mathsf{Br}}{\overset{\mathsf{CH}_3 \; \mathsf{CH}_3 \; \mathsf{Br}}}{\overset{\mathsf{CH}_3 \; \mathsf{CH}_3 \; \mathsf{$$

Examples of peroxides

Hydrogen peroxide HO-OH

Radical mechanism

Example without HBr - a polymerization reaction occurs

shorthand notation for polypropylene

Note more stable radical (in this case tetiary) is always formed by addition onto double bond

There is a termination step (not shown) that ends this polymerization. It requires combination of 2 radicals. It could be two growing chain radicals meeting or it could be from peroxide. If less peroxide is used the polymer chain will be longer.

Polymers

Poly = many Meros = parts

Examples of Biopolymers

- 1. Polysaccharides
 - polymers of sugars
- 2. Proteins and peptides
 - polymers of amino acids
- 3. Nucleic acid polymers (DNA and RNA)
 - polymers of nucleotides
- 4. Fats and polyketides
 - polymers of fatty acids
- 5. Polyisoprenoids/ terpenoids
 - polymers of isoprene

Polymer formation

Teflon

Tetrafluoroethylene Toxic gas Teflon

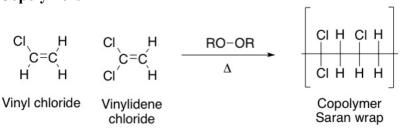
Many polymers degrade into their components if heated enough, and can further decompose.

Polyethylene

Ethylene

Polyethylene

Polyacrylonitrile


Polyacrylonitrile can form HCN if it is heated to decomposition.

Polyvinyl chloride

$$\begin{array}{c|cccc}
CI & H & RO-OR & CI & H \\
C = C & & \Delta & H & H & H
\end{array}$$
Vinyl chloride
$$\begin{array}{c|cccc}
CI & H & & & \\
\hline
Polyvinyl chloride & (PVC)
\end{array}$$

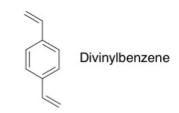
Such polymers containing chloride can form HCl if decomposed.

Copolymers

Copolymers are composed of two different subunits.

Lucite

Polystyrene


$$Ph \equiv C_6H_5 \equiv$$

phenyl group is Ph

Example: Mechanism of polystyrene formation

Short-hand for mechanism of polystyrene formation

Divinyl benzene can be added as a cross-linker so chains link on both of its double bonds. This make the copolymer more solid (as you encounter in many products) – typically about one part in 100 to one part in 6 of divinylbenzene may be added.

