RECALL: Addition Reaction of Alkenes

Addition Reactions

Hydrogen Halide (H-X)

$$H_2C=CH_2$$
 $X=CI, Br, I$ I

Reaction generally leads to syn/cis addition

Example 1: Ethylene

Example 2: 1-Methylcyclopent-1-ene

-Markovnikov addition

RECALL: Carbocation stability 3° > 2° > 1° > CH₃⁺

Hydration and ether formation

Not Stereospecific

Examples

Hydration formation

Ex #1)

H₂SO₄ (H⁺) is a catalyst, meaning that it is not transformed or used up in the reaction but is present to lower the activation energy.

Ether formation

Ex #1)

Ex #2)

Hydroboration

- B when stable and uncharged has 3 bonds and no lone pairs
- Borane forms partial bonds with another borane molecule to form B₂H₆ (diborane)
- Borane is a hydride (H⁻) donor

Fast and concerted

$$H_2C=CH_2$$
 $R=B$
 $H=B$
 $R=B$
 $R=$

Anti-Markovinkov

Concerted reaction: bond breaking and bond formation happens in a single step **Anti-Markovnikov:** the hydrogen ends up on the more substituted C in a double bond.

Structure of borane

Exists as Diborane (B₂H₆), but behaves like BH₃

Borane BH₃

Example

Oxidation and reduction reactions

Reduction adds electrons Oxidation removes electrons

Reduction Reaction

As there is an increase in the electron count in the outer shell, this is a reduction of ethylene.

Ozonolysis (lysis = cleavage) – cleavage by ozone (O_3)

- Use double-headed arrow to indicate resonance (\leftrightarrow)
- Highly reactive (always looking for negative charge such as the negative charge in a double bond)

$$C = C$$

$$O_3$$

$$O_0$$

$$O = C$$

- Reaction is irreversible

Examples of carbonyl groups

Reaction scheme of ozone

$$c=c$$
 1.0_3 $c=0$ $0=c$

Example

$$C=CH_2$$
 $1. O_3$ $C=O$ $O=C$ H Acetone Formaldehyde

More examples

Epoxidation:

Mechanism:

1-methyl-1-cyclohexene

Racemic mixture (1:1) cis/syn addition

Example 1: trans- vs cis-Butene

The possibility of epoxidation from the top is 50% and from the bottom is 50% so a 1:1 mixture of enantiomers is form (racemic mixture).

Example 2: 2-Methyl-7-octadecene

biologically, only one enantiomer is active (one shown) - racemate produced by peracetic acid

Example 3: