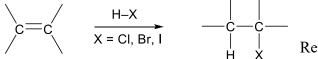

RECALL:

Addition Reactions


- Occurs on double bonds and triple bonds

Hydrogenation Addition of H₂

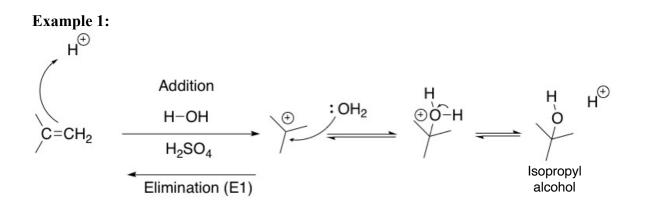
Hydrogen Halide (HX) Addition

Reaction generally leads to syn/cis addition

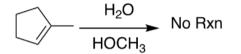
Markovnikov's Rule: In an addition reaction, the positive end of an A–B system (e.g. I–Cl) adds to the least substituted end of the double bond to make the more stable carbocation.

Addition of H₂O and ROH (Hydration and Ether Formation)

HO-H or RO-H

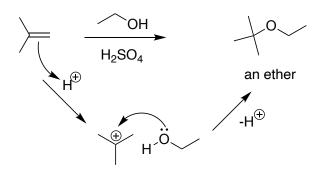

Addition R = Alkyl

 $\begin{array}{c|c} C = C & \xrightarrow{HO-H(R)} & - \begin{matrix} | & | \\ \hline H^{\oplus} & - \begin{matrix} | & | \\ - C - C - \\ H & OH(R) \\ \hline H & OH(R) \\ \hline (e.g. H_2 SO_4) \end{array}$


Not Stereospecific

Hydration formation

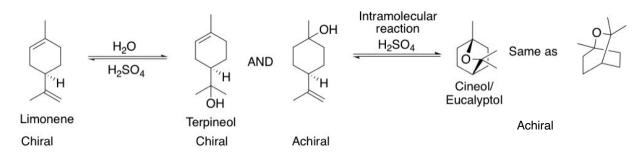
- H_2O or ROH by itself cannot add to the double bond. Need an acid (H⁺) to pull the electrons from the double bond.
- H_2SO_4 (H⁺) is a catalyst, meaning that it is not transformed or used up in the reaction but is present to lower the activation energy.
- Follows Markovnikov rules


Example 2:

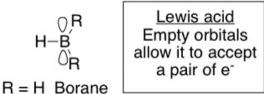
CHEM 261 Notes November 07, 2024 FALL 2024 QН H_2O δ+ H_2SO_4 δ H^+ $\mathsf{H}_{\mathsf{O}}\mathsf{H}$ H,⊕ ∖ O_J H

Ether formation

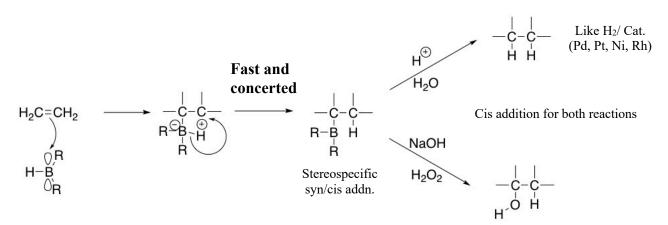
Example 1:

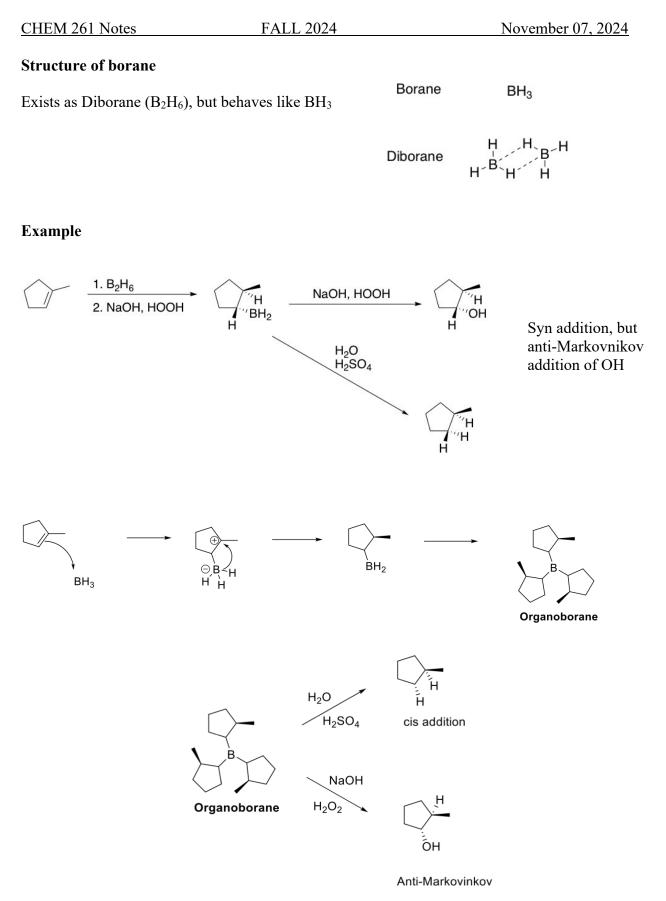


Example 2:

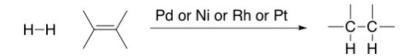


3


Example 3:


Hydroboration

- B when stable and uncharged has 3 bonds and no lone pairs -
- Borane forms partial bonds with another borane molecule to form B₂H₆ (diborane) _
- Borane is a hydride (H⁻) donor _

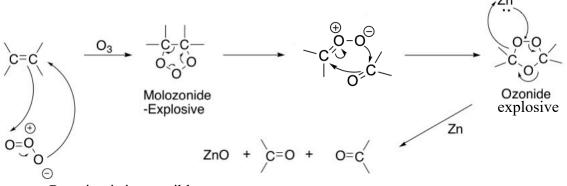

Concerted reaction: bond breaking and bond formation happens in a single step Anti-Markovnikov: the hydrogen ends up on the more substituted C in a double bond. It is SYN.

Oxidation and Reduction

Oxidation- removal of electron Reduction- Addition of electron

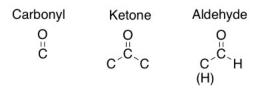
Example of Reduction (Hydrogenation)

There are 12 electrons in the reagent side and 14 electrons in the product side. There is an addition of two electrons, therefore classified as reduction.

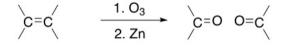

Oxidation Reactions

Ozonolysis (lysis = cleavage) – cleavage by ozone (O₃)

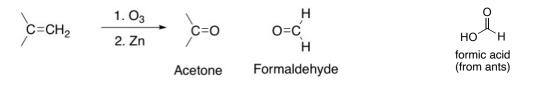
 $\begin{array}{ccc} O_3 & & O = O \\ & & O \end{array} \xrightarrow{(\bigcirc)} & \longleftrightarrow & \begin{array}{c} O = O \\ O = O \\ & O \end{array} \xrightarrow{(\bigcirc)} & O \end{array}$ Ozone -Toxic

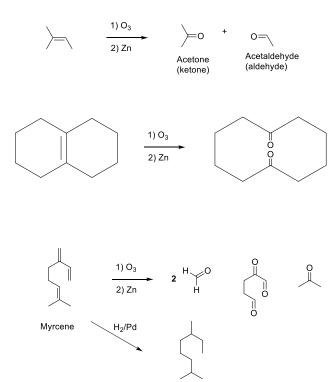

E

- Use double-headed arrow to indicate resonance (\leftrightarrow) _ -
- Highly reactive (always looking for negative charge such as the negative charge in a double bond)
- Concerted and stereospecific _



Reaction is irreversible


Examples of carbonyl groups


Reaction scheme of ozone

Example

More examples

