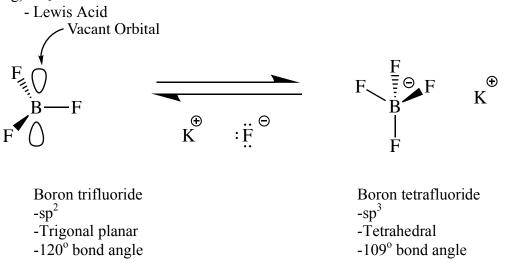
Acids and Bases

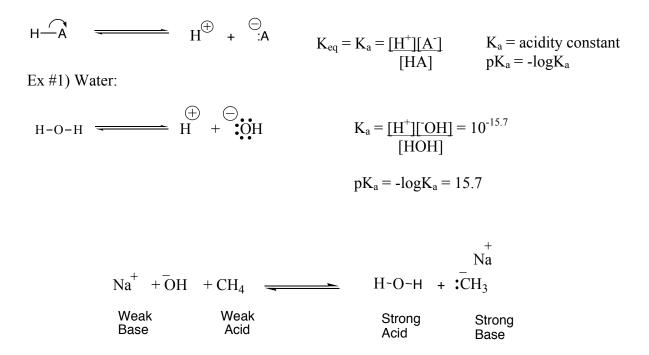
Bronsted – Lowry :

- An acid donates proton (\mathbf{H}^{+})
- A base accepts a proton (H⁺)


HCI \longrightarrow H⁺ + CI⁻ NaOH \longrightarrow Na⁺ + OH⁻

- HCI + NaOH → NaCI + H-OH
- Very fast reaction as HCl is a strong acid and NaOH is a strong base. NaCl is a weak base (weak conjugate base) and H₂O is a weak acid (weak conjugate acid).

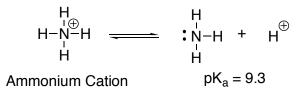
Lewis Acid/Base:


- An acid accepts a pair of electrons (e.g. HCl, H₂SO₄)
- A base donates a pair of electrons

BF₃ can react with potassium fluoride (KF) to obtain an inert gas configuration. However, BF_4^- is unhappy with a formal negative charge, so the reaction is reversible.

• Every Bronsted-Lowry acid/base is also a Lewis acid/ base. The converse statement is not true; not all Lewis acids/bases can be classified as a Bronsted-Lowry acids/bases.

The equilibrium above lies far (exclusively) to the left. Hydroxide will NOT deprotonate methane.


Ex # 2) Ammonia Gas:

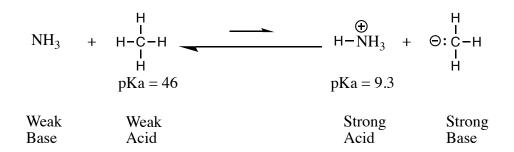
H-NH₂ $\xrightarrow{(+)}$ H $\stackrel{(-)}{\stackrel{(+)}{\stackrel{$

Ammonia gas is a better acid compared to methane (bigger K_A), because nitrogen is more electronegative than carbon. It can hold a negative charge easier than carbon.

NB: The lower the pKa the more acidic

pKa of "Ammonia" in biological system

Ex #3) Methane:


$$H-CH_3 \longrightarrow H^+ + CH_3^-$$

 $K_a = [\underline{H}^+][\underline{CH}_3^-] = 10^{-46}$ NB: Oxygen is more electronegative than nitrogen, which makes water more acidic than ammonia. Nitrogen more electronegative than carbon and that makes ammonia more acidic than methane. $pK_a = -\log K_a = 46 \text{ (NOT an acid)}$

				_ Na
Na ⁺ + OH	$+ CH_4$	<u> </u>	Н-О-Н	+ :CH ₃
Weak Base	Weak Acid		Strong Acid	Strong Base

The equilibrium above lies far (exclusively) to the left. Hydroxide will NOT deprotonate methane.

Ex #4) Strong acid/base

The reaction lies far (exclusively) to the left since ammonia is not a strong enough base to deprotonate methane

E.g.

Equilibrium proceeds to the right

⊕⊖	+ H ₂ O		⊕⊖
NaNH2		H——NH ₂ +	NaOH
(stronger	(stronger	(weaker	(weaker
base)	acid)	base)	base)

Recall:

The lower the pKa the more acidic the compound

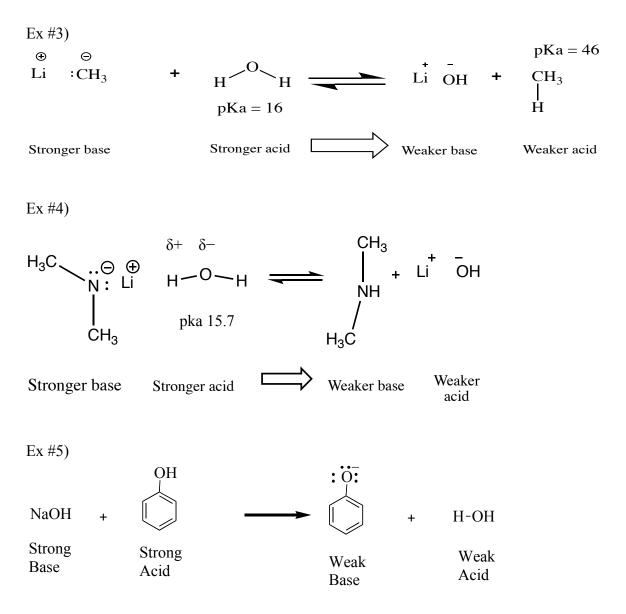
Examples of strong acids:

Acid	рКа	
HI	-10	
HBr	-9	C_{an} can be up to ± 2
HC1	-7	Can go up to +3.17 a diluted sol'n (in
HF	-10	water)
H_3O^+	-1.74	

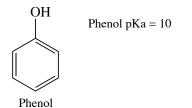
Two factors that affect acidity of the above acids:

- 1) Electronegativity the more electronegative the atom, the better it can hold a negative charge
- 2) Solvation the larger the ion, the better solvated it can be and so the more acidic it's conjugate acid will be

Ex #1)



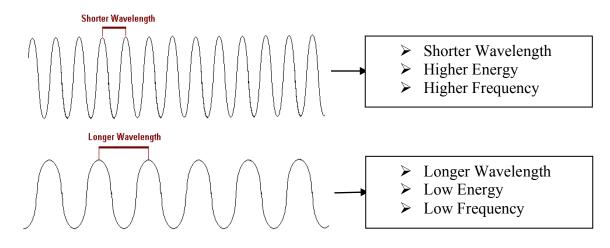
A strong acid and a strong base will quickly react with each other to drive the reaction to the weak acid and the weak base.


Ex #2)

While water is not actually a strong base, it is in comparison to C⁻. HCl is the strong acid, and so the equilibrium lies to the right. Hence H_3O^+ is the strongest acid that will exist in an aqueous solution of HCl.

NB: Oxygen is more electron withdrawing than Carbon and can stabilize negative charge so removing a proton from the oxygen is preferable than from the Carbon on the phenol compound

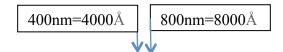
Electromagnetic Radiation:

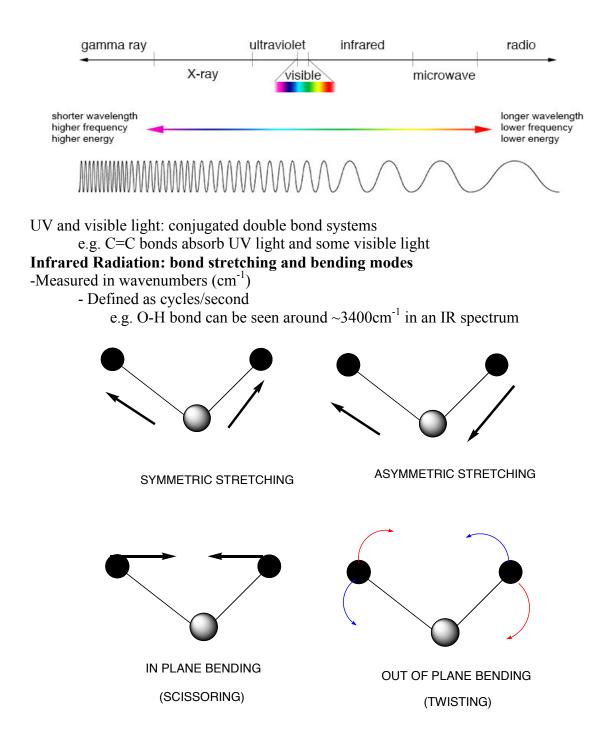

Infrared (IR) Spectroscopy – Background only:

 $E = hc/\lambda = hv$, energy is quantized

E = Energy

- h = Planck's Constant= 6.6×10^{-34} joules/sec
- v = Frequency
- $\lambda = Wavelength$

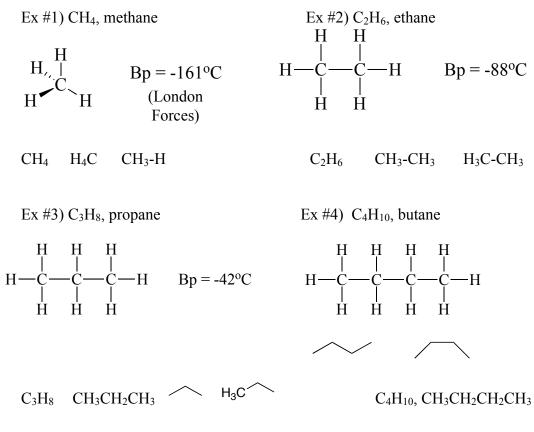

 $c = Speed of light = 3.0 \times 10^{10} \text{ cm/sec}$



NB: There is an inverse relationship between wavelength and frequency.

Electromagnetic Spectrum:

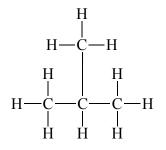
NB: 1nm = 10 angstrom


NEXT SECTION: Lecture Outline 2: ALKANES

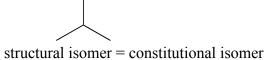
<u>Hydrocarbons</u> – Compounds that contain only C and H

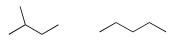
- Alkanes contain only single bonds (C-H, C-C)
- Alkenes = Olefins (C=C)
- Alkynes = Acetylenes ($C \equiv C$)

<u>Alkanes</u>


- All carbons are sp³ hybridized (optimal bond angle of 109°)
- Single bonds (σ bonds).
- Tetrahedral geometry at every carbon
- Held together by London (dispersion) forces

n-Butane: normal straight chain butane

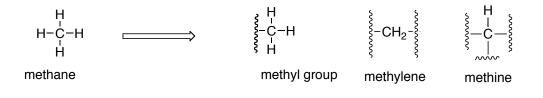

NOTE: Propane has a boiling point of -42°C, which is higher than methane because it's chain-like structure allows for more surface area for London dispersion forces to take effect.

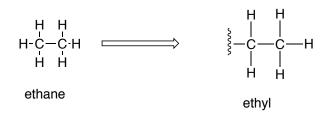

Ex #5) C_4H_{10} , isobutene or i-Butane

Isomers are different compounds that have the same molecular formula and different structure. They have different physical properties (e.g. mp, bp, odour, biological effects)
 iso - meros

same - parts one type: structural (same as constitutional)

(isopentane or 2-methylbutane)


n - pentane Neopentane



Groups (part of an alkane structure)

- In naming the particular group, drop the "ane" part and add "yl" to the name
- For example, meth<u>ane</u> \rightarrow meth<u>yl</u>

(i) Methyl group – CH₃

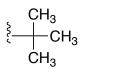
(iii) Isopropyl group

$$\begin{array}{c} CH_3 \\ I \\ H-C \\ - \\ CH_3 \end{array}$$

iso-propyl

alcohol

iso-propyl group (iv) *n*-Propyl group


$$H_3C$$
 C C H_2 H_2

$$H_2$$

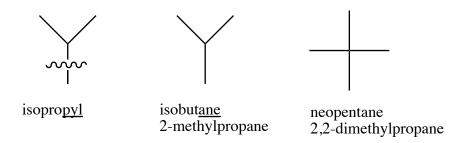
 H_3C C OH
 H_2

n-propyl chain

n-propyl alcohol

(v) *tert*-Butyl group

$$\begin{array}{c} \mathsf{CH}_3\\\mathsf{CI} \overset{}{\underset{\mathsf{CH}_3}{\overset{\mathsf{H}_3}{\overset{\mathsf{CH}_3}{\overset{\mathsf{H}_3}}}} \\ \mathsf{CH}_3 \end{array}$$


tert-Butyl chain tert-Butyl chloride

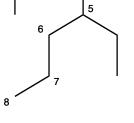
Systematic Nomenclature

RULES:

1. Find the longest straight chain

- 2. Number from end of the chain, so that the 1st branch point has the lowest number
- 3. Name the chain, then add prefixes (for the groups attached) with number and name the groups attached
- 4. Separate numbers and names by dash

Note: iso = second-to-last carbon of the chain is disubstituted (2 methyl groups) neo = second-to-last carbon of the chain is trisubstituted (3 methyl groups)


1

Prefixes for naming: Di (2), Tri (3), Tetra (4), Penta (5), Hexa (6) etc.

Naming Examples:

2,3,3-trimethylpentane

2

3

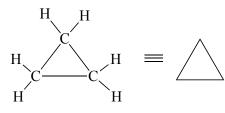
3,5-diethyl-4-methyloctane

Cycloalkanes:

General Molecular Formula of Alkanes

- No rings: general formula is C_NH_{2N+2}
- Each deviation of 2 hydrogens from the C_NH_{2N+2} formula is a degree of unsaturation

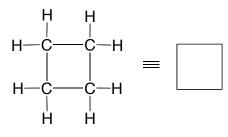
- Cylcoalkanes always have at least 1 degree of unsaturation


e.g.

- $\circ~1$ Degree of unsaturation : $~C_{N}H_{2N}~~$ Alkanes with one ring or double bond
- $\circ~2$ Degrees of unsaturation : $C_{N}H_{2N\text{-}2}$ Alkanes with two rings or double bonds, or one each

Note: Ring Structure Naming

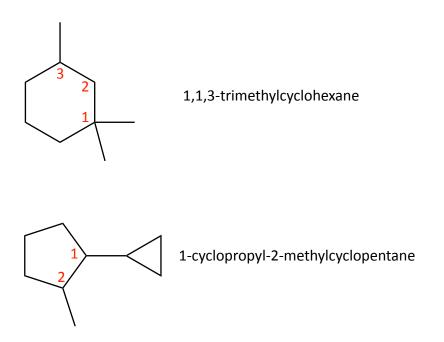
- Prefix with "cyclo"
- Start with numbering at point of maximum branching/most important functional group
- Number so as to give next branch/functional group lowest number


Cyclopropane, C₃H₆

- One degree of unsaturation (*n*-propane is C₃H₈)
 Not a structural isomer (different molecular formula)
- C-C-C bond angle (60°)
- Highly reactive due to ring strain

Cyclobutane, C₄H₈

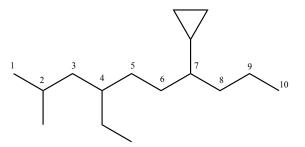
Cyclohexane, C₆H₁₂


 \equiv

Cyclopentane, C5H10

Cyclopentane

General Molecular Formula of Alkanes


- No rings: general formula is C_NH_{2N+2}
- Each deviation of 2 hydrogens from the $C_{\rm N}H_{2\rm N+2}$ formula is a degree of unsaturation
- 1 Degree of unsaturation : C_NH_{2N} Alkanes with one ring or double bond
- 2 Degrees of unsaturation : C_NH_{2N-2} Alkanes with two rings or double bonds, or one each

Examples of Naming Cycloalkanes:

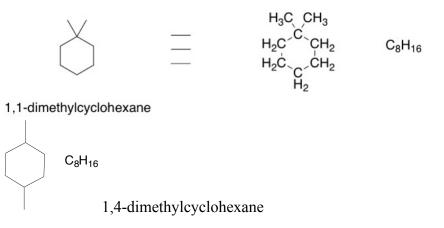
 $\mathbf{y}^{\mathbf{A}}$

Degree of Unsaturation= 2

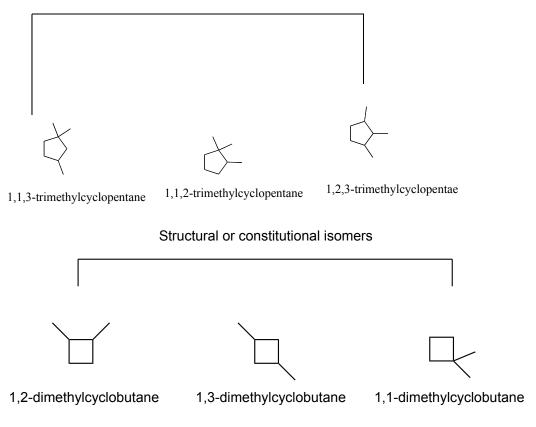
1-Cyclopropylcyclohexane

Degree of Unsaturation= 1

7-cyclopropyl-4-ethyl-2-methyldecane


Degree of Unsaturation= 2

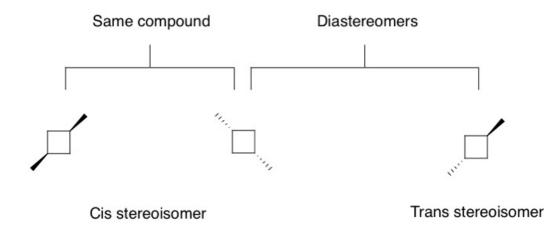
1-Cyclobutyl-3-ethyl-1-methylcyclopentane


ISOMERS

Structural (Constitutional) Isomers

Share the same molecular formula but have the atomic bonds in different places

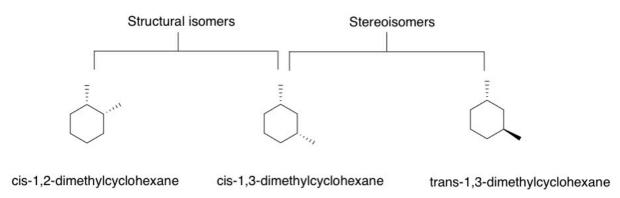
The above two compounds are structural (also known as constitutional) isomers


Stereoisomers

Compounds with the same molecular formula, same order of connection (base name) but connection of atoms that differ in 3D geometry

Two Types:

- 1. Diastereomers stereoisomers that are not mirror images
- 2. Enantiomers stereoisomers that are non-superposable mirror images of each other


Example: 1,3 dimethylcyclobutane

The first and second compounds are the same compound rotated in 3D space. The third compound has different geometry at one center, making it a stereoisomer, specifically a diastereomer.

Cis - the substituents are on the same side of the ring

Trans - the substituents are on opposite sides of the ring

Example: 1,2-dimethylcyclohexane and 1,3-dimethylcyclohexane

The second two compounds are diastereomers of each other.