sp² Hybridization

- Double bonds
- Planar geometry
- Angle between two atoms: 120°
- No free rotation around double bonds
- Overlap of atomic orbitals with s component gives sigma molecular orbital (bond)
- Overlap of p atomic orbitals with another p gives pi molecular orbital (bond)

- Each line in a structure represents 2 e⁻

Hybridization (sp³ vs sp²)

Hybridization (sp³ vs sp²) cont.

no free rotation around double bonds (overlap of p orbitals to form pi (π) bond prevents that)

e.g.

1. Aldehyde

The CH_2 is sp³ hybridized, the atoms attached to it have a bond angle of 109° The carbonyl carbon is sp² hybridized, the atoms attached to it have a bond angle of 120° The oxygen contains two lone pairs (not drawn), it is sp² hybridized

Hybridization: sp

- Triple bonds
- Linear geometry
- No free rotation around triple bonds

Triple bond:

One sigma bond between the H- carbons plus two pi bonds formed through p_y and p_z ac

sigma (s of H and sp of C)

acetylene = ethyne

sp Hybridization

- Triple bonds
- Linear geometry
- No free rotation around triple bonds

Contains sigma, π_z , and π_v bonds

-H

- Angle between two atoms: 180°

e.g. Acetylene/Ethyne

H-

