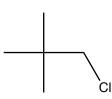
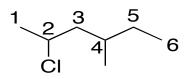
Naming of Alkyl Halides = Haloalkanes

CH ₃ Cl	CH_2Cl_2	CHCl ₃	CCl ₄
Methyl chloride	Methylene chloride	Chloroform	Carbon tetrachloride
Chloromethane	Dichloromethane	Trichloromethane	Tetrachloromethane


Structure and Nomenclature

- Find longest chain with largest number of branches
 Number from end so as to give 1st halogen the lowest number
- 3) Name prefix with "halo" (chloro, bromo, iodo, fluoro) OR name alkyl and add halide (chloride, bromide, iodide, fluoride) as the suffix

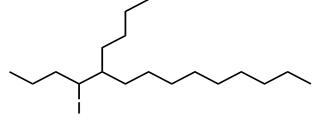
Examples:



Isopropyl Bromide 2-Bromopropane

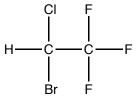
tert-Butyl fluoride 2-Fluoro-2-methylpropane

Neopentyl chloride 1-Chloro-2,2-dimethylpropane

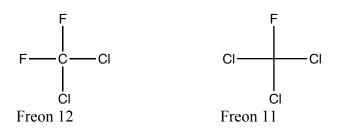


Fluorocyclopropane

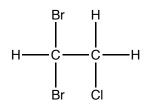
Cyclopropyl fluoride


2 -chloro -4-methylhexane

5-Butyl-4-iodotetradecane


Applications of Haloalkanes

1.) Halothane (anesthetic)



1,1,1-trifluoro-2-bromo-2-chloroethane

2.) Freon = refrigerants/coolants

3.) 1,1-dibromo-2-chloroethane = male contraceptive (sperm count drops down to zero from 100 million/mL)

Physical Properties of Alkyl Halides:

- Governed primarily by dipole-dipole interactions, more polar than hydrocarbons/alkanes.
- High MP and BP relative to hydrocarbons of similar molecular weight
- Good solvents for organic compounds e.g. methylene chloride (CH₂Cl₂) and chloroform (CHCl₃) are very common.
- If % composition $\ge 65\%$ halogen by weight, then more dense than water ($\rho > 1.0 \text{ g/cm}^3$)
- Immiscible (insoluble) in H₂O, which floats on top of the halide