Recall:

The lower the pKa the more acidic the compound

Examples of strong acids:

Acid	рКа	
HI	-10	
HBr	-9	Can so up to ± 2.17 in
HCl	-7	a diluted sol'n (in
HF	-10	water)
H_3O^+	-1.74	

Two factors that affect acidity of the above acids:

- 1) Electronegativity the more electronegative the atom, the better it can hold a negative charge
- 2) Solvation the larger the ion, the better solvated it can be and so the more acidic it's conjugate acid will be

Ex #1)

⊕ ⊝ Na OH	+	HCI	 ⊕ ⊝ Na Cl	+	Н-ОН
		pKa=-7 Strong Acid	Weak Base		pKa=16 Weak Acid

A strong acid and a strong base will quickly react with each other to drive the reaction to the weak acid and the weak base.

Ex #2)

H-OH	+	HCI	<u> </u>	⊖ Cl	+	H_3O^{\oplus}
Strong Base	Э	pKa=-7 Strong Acid		Weak Base)	pKa=-1.74 Weak Acid

While water is not actually a strong base, it is in comparison to C⁻. HCl is the strong acid, and so the equilibrium lies to the right. Hence H_3O^+ is the strongest acid that will exist in an aqueous solution of HCl.

Ex #4)

NB: Oxygen is more electron withdrawing than Carbon and can stabilize negative charge so removing a proton from the oxygen is preferable than from the Carbon on the phenol compound

