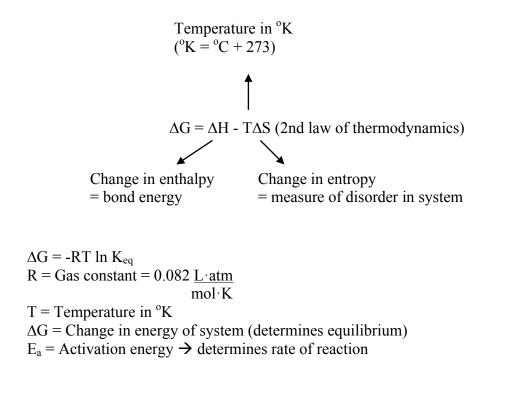

<u>Reactivity/ Reactions</u> <u>Exothermic Reaction:</u> Negative ΔG

Example: Combustion of Pentane

Progress of reaction is also called **Reaction Coordinate** S.M. = starting material or reactants (e.g. pentane, oxygen)

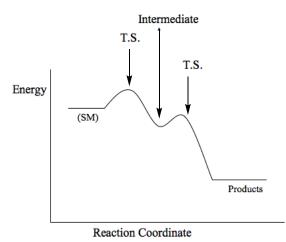
Energy diagram for the reaction:


NB: $\Delta E = \Delta G$: Gibbs free energy (total) change for the reaction

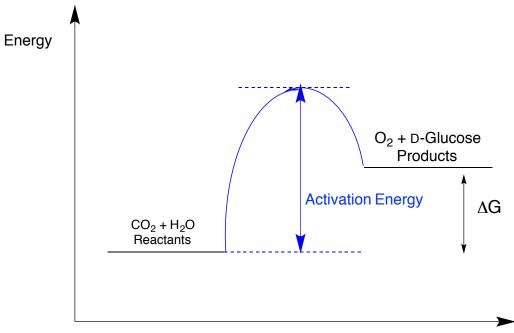
Reaction coordinate => progress of reaction

- The above reaction is an exothermic reaction, heat is released during reaction - ΔG will be negative ($\Delta G < 0$) for an exothermic (heat releasing) reaction, but will be positive ($\Delta G > 0$) for endothermic reaction. - E_A = Activation energy: minimum amount of energy required to activate molecules or atoms to be able to undergo a chemical reaction.

- Activated complex or transition state (T.S): Highest energy point in a reaction pathway in which bonds are being formed and broken simultaneously. A T.S. cannot be observed or isolated. Should not be confused with and an intermediate.


Thermodynamic of a chemical reaction:

 K_{eq} = equilibrium constant = [C][D] [C] = concentration of compound C [A][B]


 ΔG determines product concentrations at equilibrium Ea determines rate of reaction

Reaction proceeding through an intermediate

NB: The Rate Determining Step is the TS with the larger E_A , which will be the slowest step; that is for the diagram to the left, the first step is the rate determining step.

Endothermic Reaction: Positive ΔG

Progress of reaction

Summary:

 $\Delta E = \Delta G$: Gibbs free energy (total) change for the reaction

Change in Entropy $\Delta G = \Delta H - T\Delta S \text{ (2nd law of thermodynamics)}$ \downarrow Change in enthalpy = bond energy Exothermic reactions have ΔG = Negative Endothermic reactions have ΔG = Positive

TS = Transition State: Point where bonds are partially broken and partially formed Intermediate: Short lived species

Bond Energy

Example:

Radicals

 $H-CH_3 \iff H \bullet + \bullet CH_3$

Bond	Bond Energy (kcal/mol)
H-C	99
H-O	111
C-C	83
C=O	179
0=0	119

e.g.)
$$CH_4 + 2 O_2 \xrightarrow{\Delta} CO_2 + 2 H_2O - Exothermic reaction (releases Energy (E))$$

 $\Delta E_{reaction} = \Delta E_{SM} - \Delta E_{pdt}$

For CH ₄ :	$4 \times C-H \text{ bonds} = 4 \times 99$		= 396 kcal/mol	ΔE_{SM} = sum of bonds
	2 x O=O	= 2 x 119	= <u>238 kcal/mol</u>	broken (enthalpy)
	ΔE_{SM}		= 634 kcal/mol	

For products:	2 C = 0 = 2	x 179 = 358 kcal/mol	ΔE_{pdt} = sum of bonds formed
	4 H-O = 4	x 111 = 444 kcal/mol	
	ΔE_{pdt}	= 802 kcal/mol	

 $\Delta E_{reaction} = 634 \text{ kcal/mol} - 802 \text{ kcal/mol} = -168 \text{ kcal/mol}$ (exothermic reaction, energy released)